Nano Research

, Volume 5, Issue 8, pp 558–564 | Cite as

Synthesis of a lithium-encapsulated fullerenol and the effect of the internal lithium cation on its aggregation behavior

  • Hiroshi Ueno
  • Yuji Nakamura
  • Naohiko Ikuma
  • Ken KokuboEmail author
  • Takumi Oshima
Research Article


A lithium-encapsulated fullerenol Li@C60(OH)18, as an example of a polar solvent-soluble endohedral fullerene derivative, has been synthesized and fully characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, UV spectroscopy, electron spin resonance (ESR) spectroscopy, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), elemental analysis, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the particle size was determined using the induced grating (IG) method, and scanning probe microscopy. The encapsulated Li+ was clearly detected by 7Li NMR at very high field in the range −15 to −19 ppm, an intermediate lithium-encapsulated fullerenol was detected by MALDI-TOF-MS, and the molar ratio of lithium-encapsulated fullerenol to empty fullerenol was quantitatively determined to be 12:88 by ICP-AES. The solid-state ESR and particle size measurements using the IG method showed the characteristic anionic behavior with no external counter cations, in what can be called a “cation-encapsulated anion nanoparticle”, revealing the drastic differences between its properties and those of empty C60(OH)16.


Endohedral fullerene fullerenol lithium cation cation-encapsulated anion nanoparticle electrostatic interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_241_MOESM1_ESM.pdf (611 kb)
Supplementary material, approximately 616 KB.


  1. [1]
    Tellgmann, R.; Krawez, N.; Lin, S. -H.; Hertel, I. V.; Campbell, E. E. B. Endohedral fullerene production. Nature 1996, 382, 407–408.CrossRefGoogle Scholar
  2. [2]
    Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T. et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2010, 2, 678–683.CrossRefGoogle Scholar
  3. [3]
    Akasaka, T.; Nagase, S. Endofullerenes: A new Family of Carbon Clusters; Kluwer: Dordrecht, The Netherlands, 2002.Google Scholar
  4. [4]
    Fukuzumi, S.; Ohkubo, K.; Kawashima, Y.; Kim, D. S.; Park, J. S.; Jana, A.; Lynch, V. M.; Kim, D.; Sessler, J. L. Ion-controlled on-off switch of electron transfer from tetrathiafulvalene calix[4]prroles to Li+@C60. J. Am. Chem. Soc. 2011, 133, 15938–15941.CrossRefGoogle Scholar
  5. [5]
    Akasaka, T.; Kato, T.; Kobayashi, K.; Nagase, S.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Exohedral adducts of La@C82. Nature 1995, 374, 600–601.CrossRefGoogle Scholar
  6. [6]
    Chiang, L. Y.; Lu, F. -J.; Lin, J. -T. Free radical scavenging activity of water-soluble fullerenols. J. Chem. Soc., Chem. Commun. 1995, 1283–1284.Google Scholar
  7. [7]
    Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated or gamma-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and beta-carotene bleaching assay. Bioorg. Med. Chem. Lett. 2009, 19, 5293–5296.CrossRefGoogle Scholar
  8. [8]
    Xiao, L.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent. Free Radic. Biol. Med. 2011, 51, 1376–1389.CrossRefGoogle Scholar
  9. [9]
    Sardenberg, R. B.; Teixeira, C. E.; Pinheiro, M.; Figueiredo, J. M. A. Nonlinear conductivity of fullerenol aqueous solutions. ACS Nano 2011, 5, 2681–2686.CrossRefGoogle Scholar
  10. [10]
    Chiang, L. Y.; Wang, L. -Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J. Org. Chem. 1994, 59, 3960–3968.CrossRefGoogle Scholar
  11. [11]
    Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W. Versatile nitronium chemistry for C60 fullerene functionalization. J. Am. Chem. Soc. 1992, 114, 10154–10157.CrossRefGoogle Scholar
  12. [12]
    Chiang, L. Y.; Swirczewski, J. W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. Multi-hydroxy additions onto C60 fullerene molecules. J. Chem. Soc., Chem. Commun. 1992, 1791–1793.Google Scholar
  13. [13]
    Chiang, L. Y.; Bhonsle, J. B.; Wang, L.; Shu, S. F.; Chang, T. M.; Hwu, J. R. Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 1996, 52, 4963–4972.CrossRefGoogle Scholar
  14. [14]
    Schneader, N. S.; Darwish, A. D.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Formation of fullerols via hydroboration of fullerene-C60. J. Chem. Soc., Chem. Commun. 1994, 463–464.Google Scholar
  15. [15]
    Wang, S.; He, P.; Zhang, J. -M.; Jiang, H.; Zhu, S. -Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 2005, 35, 1803–1807.CrossRefGoogle Scholar
  16. [16]
    Arrais, A.; Diana, E. Highly water soluble C60 derivatives: A new synthesis. Fuller. Nanotub. Carbon Nanostruct. 2003, 11, 35–46.CrossRefGoogle Scholar
  17. [17]
    Li, J.; Takeuchi, A.; Ozawa, M.; Li, X.; Saigo, K.; Kitazawa, K. C60 fullerol formation catalyzed by quaternary ammonium hydroxides. J. Chem. Soc., Chem. Commun. 1993, 1784–1785.Google Scholar
  18. [18]
    Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2008, 2, 327–333.CrossRefGoogle Scholar
  19. [19]
    Zhang, G.; Liu, Y.; Liang, D.; Gan, L.; Li, Y. Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew. Chem. Int. Ed. 2010, 49, 5293–5295.CrossRefGoogle Scholar
  20. [20]
    Kokubo, K.; Shirakawa, S.; Kobayashi, N.; Aoshima, H.; Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 2011, 4, 204–215.CrossRefGoogle Scholar
  21. [21]
    Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem. 2001, 12, 510–514.CrossRefGoogle Scholar
  22. [22]
    Sitharaman, B.; Bolskar, R. B.; Rusakova, I.; Wilson, L. J. Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett. 2004, 4, 2373–2378.CrossRefGoogle Scholar
  23. [23]
    Popok, V. N.; Azarko, I. I.; Gromov, A. V.; Jönsson, M.; Lassensson, A.; Campbell, E. E. B. Conductance and EPR study of the endohedral fullerene Li@C60. Solid State Commun. 2005, 133, 499–503.CrossRefGoogle Scholar
  24. [24]
    Husebo, L. O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc. 2004, 126, 12055–12064.CrossRefGoogle Scholar
  25. [25]
    Wada, Y.; Totoki, S.; Watanabe, M.; Moriya, N.; Tsunazawa, Y.; Shimaoka, H. Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt. Express 2006, 14, 5755–576.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hiroshi Ueno
    • 1
  • Yuji Nakamura
    • 1
  • Naohiko Ikuma
    • 1
  • Ken Kokubo
    • 1
    Email author
  • Takumi Oshima
    • 1
  1. 1.Division of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan

Personalised recommendations