Nano Research

, Volume 5, Issue 8, pp 550–557 | Cite as

Mechanical properties of freely suspended atomically thin dielectric layers of mica

  • Andres Castellanos-Gomez
  • Menno Poot
  • Albert Amor-Amorós
  • Gary A. Steele
  • Herre S. J. van der Zant
  • Nicolás Agraït
  • Gabino Rubio-Bollinger
Research Article

Abstract

We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young’s modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young’s modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young’s modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.

Keywords

Mica nanosheets freely suspended mechanical properties atomically thin crystal mechanical exfoliation 

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V. and Geim. A. K. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  2. [2]
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponnmarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.CrossRefGoogle Scholar
  3. [3]
    Eda, G.; Fanchini, G. and Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  4. [4]
    Kim, K.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y. and Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  5. [5]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J. and Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  6. [6]
    Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. -Y.; Galli, G. and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  7. [7]
    Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J. and Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.CrossRefGoogle Scholar
  8. [8]
    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.CrossRefGoogle Scholar
  9. [9]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V. and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  10. [10]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, L. K. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  11. [11]
    Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011, 7, 465–468.CrossRefGoogle Scholar
  12. [12]
    Pacile, D.; Meyer, J. Ç.; Girit, C. O. and Zettl, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.CrossRefGoogle Scholar
  13. [13]
    Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.CrossRefGoogle Scholar
  14. [14]
    Möller, M. W.; Handge, U. A.; Kunz, D. A.; Lunkenbein, T.; Altstadt, V. and Breu. J. Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 2010, 4, 717–724.CrossRefGoogle Scholar
  15. [15]
    Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J. and Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.Google Scholar
  16. [16]
    Fu, Y.-T.; Zartman, G. D.; Yoonessi, M.; Drummy, L. F. and Heinz. H. Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits. J. Phys. Chem. C 2011, 115, 22292–22300.CrossRefGoogle Scholar
  17. [17]
    Gao, J.; Guo, W.; Geng, H.; Hou, X.; Shuai, Z. and Jiang, L. Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res. 2012, 5, 99–108.CrossRefGoogle Scholar
  18. [18]
    Low, C. G. and Zhang, Q. Ultra-thin and flat mica as gate dielectric layers. Small 2012, in press, DOI: 10.1002/smll.201200300.Google Scholar
  19. [19]
    Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W. and Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.CrossRefGoogle Scholar
  20. [20]
    Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I. and Lichtenstein. A. I. Graphene adhesion on mica: role of the surface morphology. Phys. Rev. B 2011, 83, 045409.CrossRefGoogle Scholar
  21. [21]
    Lippert, G.; Dabrowski, J.; Lemme, M.; Marcus, C.; Seifarth, O. and Lupina, G. Direct graphene growth on insulator. Phys. Status Solidi B 2011, 248, 2619–2622.CrossRefGoogle Scholar
  22. [22]
    Lu, X. F.; Majewski, L. A. and Song, A. M. Electrical characterization of mica as an insulator for organic field-effect transistors. Org. Electron. 2008, 9, 473–480.CrossRefGoogle Scholar
  23. [23]
    Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P. and Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.CrossRefGoogle Scholar
  24. [24]
    Miyake, S. 1 nm deep mechanical processing of muscovite mica by atomic force microscopy. Appl. Phys. Lett. 1995, 67, 2925–2927.CrossRefGoogle Scholar
  25. [25]
    He, Y.; Dong, H.; Meng, Q.; Jiang, L.; Shao, W.; He, L. and Hu, W. Mica, a potential two-dimensional crystal gate insulator for organic field-effect transistors. Adv. Mater. 2011, 23, 5502–5507.CrossRefGoogle Scholar
  26. [26]
    Ponomarenko, L. A.; Yang, R.; Mohiuddin, T. M.; Katsnelson, M. I.; Novoselov, K. S.; Morozov, S. V.; Zhukov, A. A.; Schedin, F.; Hill. E. W. and Geim, A. K. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 2009, 102, 206603.CrossRefGoogle Scholar
  27. [27]
    Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S. and Williams, E. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.CrossRefGoogle Scholar
  28. [28]
    Fan, J.; Michalik, J. M.; Casado, L.; Roddaro, S.; Ibarra, M. R. and De Teresa, J. M. Investigation of the influence on graphene by using electron-beam and photo-lithography. Solid State Commun. 2011, 151, 1574–1578.CrossRefGoogle Scholar
  29. [29]
    Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J. and Agraït, N. Ultralong natural graphene nanoribbons and their electrical conductivity. Small 2009, 5, 924–927.CrossRefGoogle Scholar
  30. [30]
    Castellanos-Gomez, A.; Agraït, N. and Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.CrossRefGoogle Scholar
  31. [31]
    Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z.; Ahmed, N.; Elgan, S. L.; Chen, W. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. P. Natl. Acad. Sci. USA 2010, 107, 17095–17100.CrossRefGoogle Scholar
  32. [32]
    Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G. and Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.CrossRefGoogle Scholar
  33. [33]
    Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A. and Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.CrossRefGoogle Scholar
  34. [34]
    Nemes-Incze, P.; Osváth, Z.; Kamarás, K. and Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442.CrossRefGoogle Scholar
  35. [35]
    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res. Lett. 2012, 7, 233.CrossRefGoogle Scholar
  36. [36]
    Lee, C.; Wei, X.; Kysar, J. W. and Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  37. [37]
    Landau, L. D. and Lifshitz, E. M. Theory of Elasticity; Oxford: New York, 1986.Google Scholar
  38. [38]
    Gao, S.; Kern, H.; Jin, Z. M.; Popp, T.; Jin, S. Y.; Zhang, H. F. and Zhang, B. R. Poisson’s ratio of eclogite: The role of retrogression. Earth. Planet. Sci. Lett. 2001, 192, 523–531.CrossRefGoogle Scholar
  39. [39]
    Poot, M. and van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 2012, 511, 273–335.CrossRefGoogle Scholar
  40. [40]
    Komaragiri, U.; Begley, M. and Simmonds, J. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 2005, 72, 203–212.Google Scholar
  41. [41]
    Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, 1959.Google Scholar
  42. [42]
    Zhang, G.; Wei, Z. and Ferrell, R. E. Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl. Clay Sci. 2009, 43, 271–281.CrossRefGoogle Scholar
  43. [43]
    Sharpe, W. N.; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G. and Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649–658.CrossRefGoogle Scholar
  44. [44]
    Li, X.; Wang, X.; Xiong, Q. and Eklund, P. C. Mechanical properties of ZnS nanobelts. Nano Lett. 2005, 5, 1982–1986.CrossRefGoogle Scholar
  45. [45]
    McNeil, L. E. and Grimsditch, M. Elastic moduli of muscovite mica. J. Phys.: Condens. Matter 1993, 5, 1681–1690.CrossRefGoogle Scholar
  46. [46]
    Gómez-Navarro, C.; Burghard, M.; and Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.CrossRefGoogle Scholar
  47. [47]
    Turchanin, A.; Beyer, A.; Nottbohm, C. T.; Zhang, X.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T. and Golzhauser, A. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009, 21, 1233–1237.CrossRefGoogle Scholar
  48. [48]
    Kunz, D. A.; Max, E.; Weinkamer, R.; Lunkenbein, T.; Breu, J. and Fery, A. Deformation measurements on thin clay tactoids. Small 2009, 5, 1816–1820.CrossRefGoogle Scholar
  49. [49]
    Tapily, K.; Jakes, J. E.; Stone, D. S.; Shrestha, P.; Gu, D.; Baumgart, H. and Elmustafa, A. A. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition. J. Electrochem. Soc. 2008, 155, H545–H551.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andres Castellanos-Gomez
    • 1
    • 2
  • Menno Poot
    • 1
    • 3
  • Albert Amor-Amorós
    • 2
  • Gary A. Steele
    • 1
  • Herre S. J. van der Zant
    • 1
  • Nicolás Agraït
    • 2
    • 4
  • Gabino Rubio-Bollinger
    • 2
  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  2. 2.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of Engineering ScienceYale UniversityNew HavenUSA
  4. 4.Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-NanocienciaMadridSpain

Personalised recommendations