Advertisement

Nano Research

, Volume 5, Issue 8, pp 543–549 | Cite as

Sequential assembly of metal-free phthalocyanine on few-layer epitaxial graphene mediated by thickness-dependent surface potential

  • Yabo Gao
  • Yanfeng ZhangEmail author
  • Jun Ren
  • Denghua Li
  • Teng Gao
  • Ruiqi Zhao
  • Yanlian Yang
  • Sheng Meng
  • Chen Wang
  • Zhongfan LiuEmail author
Research Article

Abstract

Due to strong interactions between epitaxial graphene and SiC(0001) substrates, the overlayer charge density induced by the interface charging effect is much more attenuated than that of exfoliated graphene on SiO2. We report herein a quantitive detection of the charge properties of few-layer graphene by surface potential measurements using electrostatic force microscopy (EFM). A minor difference in surface potential is observed to mediate a sequential assembly of metal-free phthalocyanine (H2Pc) on monolayer, bilayer and trilayer graphenes, as demonstrated by scanning tunneling microscopy (STM). In order to understand this, we further executed density functional theory (DFT) calculations which showed higher adsorption energies for Pc on thinner graphenes. In this case, we attribute the unique growth behavior of Pc to its variable adsorption energies on few-layer graphene, and in turn the layer charge variations from the viewpoint of energy minimizations. This work is expected to provide fundamental data useful for related nanodevice fabrications.

Keywords

Scanning tunneling microscopy (STM) epitaxial graphene phthalocyanine self-assembly electrostatic force microscopy (EFM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Filleter, T.; Emtsev, K. V.; Seyller, Th.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.CrossRefGoogle Scholar
  2. [2]
    Lee, N. J.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Jeon, D. Y.; Kim, D. C.; Seo, S.; Chung, H. J. The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl. Phys. Lett. 2009, 94, 222107.CrossRefGoogle Scholar
  3. [3]
    Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.CrossRefGoogle Scholar
  4. [4]
    Luo, Z. Q.; Yu, T.; Kim, K.; Ni, Z. H.; You, Y. M.; Lim, S. H.; Shen, Z. X.; Wang, S. Z.; Lin, J. Y. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781–1788.CrossRefGoogle Scholar
  5. [5]
    Luo, Z. T.; Somers, L. A.; Dan, Y. P.; Ly, T.; Kybert, N. J.; Mele, E. J.; Johnson, A. T. C. Size-selective nanoparticle growth on few-layer graphene films. Nano Lett. 2010, 10, 777–781.CrossRefGoogle Scholar
  6. [6]
    Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944–946.CrossRefGoogle Scholar
  7. [7]
    Ohta, T.; Bostwick, A.; Seyller, Th.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.CrossRefGoogle Scholar
  8. [8]
    Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 2007, 129, 10418–10422.CrossRefGoogle Scholar
  9. [9]
    Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Molecular doping of graphene. Nano Lett. 2008, 8, 173–177.CrossRefGoogle Scholar
  10. [10]
    Lu, Y. H.; Chen, W.; Feng, Y. P.; He, P. M. Tuning the electronic structure of graphene by an organic molecule. J. Phys. Chem. B 2009, 113, 2–5.CrossRefGoogle Scholar
  11. [11]
    Coletti, C.; Riedl, C.; Lee, D. S.; Krauss, B.; Patthey, L.; von Klitzing, K.; Smet, J. H.; Starke U. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 2010, 81, 235401.CrossRefGoogle Scholar
  12. [12]
    Wang, X. M.; Xu, J. B.; Xie, W. G.; Du, J. Quantitative analysis of graphene doping by organic molecular charge transfer. J. Phys. Chem. C 2011, 115, 7596–7602.CrossRefGoogle Scholar
  13. [13]
    Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J. Selective chemical modification of graphene surfaces: Distinction between single and bilayer graphene. Small 2010, 6, 1125–1130.CrossRefGoogle Scholar
  14. [14]
    Koehler, F. M.; Luechinger, N. A.; Ziegler, D.; Athanassiou, E. K.; Grass, R. N.; Rossi, A.; Hierold, C.; Stemmer, A.; Stark, W. J. Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. Angew. Chem. Int. Ed. 2009, 48, 224–227.CrossRefGoogle Scholar
  15. [15]
    Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao. Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721CrossRefGoogle Scholar
  16. [16]
    Wang, Y. L.; Ren, J.; Song, C. L.; Jiang, Y. P.; Wang, L. L.; He, K.; Chen, X.; Jia, J. F.; Meng, S.; Kaxiras, E.; Xue, Q. K.; Ma, X. C. Selective adsorption and electronic interaction of F16CuPc on epitaxial graphene. Phys. Rev. B 2010, 82, 245420.CrossRefGoogle Scholar
  17. [17]
    Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, Th.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802.CrossRefGoogle Scholar
  18. [18]
    Datta, S. S.; Strachan, D. R.; Mele, E. J.; Johnson, A. T. C. Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett. 2009, 9, 7–11.CrossRefGoogle Scholar
  19. [19]
    Burnett, T.; Yakimova, R.; Kazakova, O. Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett 2011, 11, 2324–2328.CrossRefGoogle Scholar
  20. [20]
    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys: Condens. Matter. 2002, 14, 2745–2779.CrossRefGoogle Scholar
  21. [21]
    Emtsev, K. V.; Speck, F.; Seyller, Th.; Ley, L. Interaction, growth, and ordering of epitaxial graphene on SiC(0001) surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.CrossRefGoogle Scholar
  22. [22]
    Seyller, Th.; Bostwick, A.; Emtsev, K. V.; Horn, K.; Ley, L.; McChesney, J. L.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F. Epitaxial graphene: A new material. Phys. StatusSolIdi. B-Basic Solid State Phys. 2008, 245, 1436–1446.CrossRefGoogle Scholar
  23. [23]
    Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, Th.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of Few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.CrossRefGoogle Scholar
  24. [24]
    Brar, V. W.; Zhang, Y. B.; Yayon, Y.; Ohta, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Horn, K.; Crommie, M. F. Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 2007, 91, 122102.CrossRefGoogle Scholar
  25. [25]
    Stolyarova, E.; Rim, K. T.; Ryu, S. M.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA 2007, 104, 9209–9212.CrossRefGoogle Scholar
  26. [26]
    Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural Properties of the Graphene-SiC(0001) Interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.CrossRefGoogle Scholar
  27. [27]
    Curtin, A. E.; Fuhrer, M. S.; Tedesco, J. L.; Myers-Ward, R. L.; Eddy, C. R. Jr.; Gaskill, D. K. Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Appl. Phys. Lett. 2011, 98, 243111.CrossRefGoogle Scholar
  28. [28]
    Staii, C.; Johnson, A. T.; Pinto, N. J. Quantitative analysis of scanning conductance microscopy. Nano Lett. 2004, 4, 859–862.CrossRefGoogle Scholar
  29. [29]
    Coffey, D. C.; Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 2006, 5, 735–740.CrossRefGoogle Scholar
  30. [30]
    Baffou, G.; Mayne, A. J.; Comtet, G.; Dujardin, G.; Sonnet, Ph.; Stauffer, L. Anchoring phthalocyanine molecules on the 6H-SiC(0001)3×3 surface. Appl. Phys. Lett. 2007, 91, 073101.CrossRefGoogle Scholar
  31. [31]
    Nilson, K.; Åhlund, J.; Brena, B.; Göthelid, E.; Schiessling, J.; Martensson, N.; Puglia, C. Scanning tunneling microscopy study of metal-free phthalocyanine monolayer structures on graphite. J. Chem. Phys. 2007, 127, 114702.CrossRefGoogle Scholar
  32. [32]
    Komeda, T.; Isshiki, H.; Liu, J. Metal-free phthalocyanine (H2Pc) molecule adsorbed on the Au(111) surface: Formation of a wide domain along a single lattice direction. Sci. Technol. Adv. Mater. 2010, 11, 054602.CrossRefGoogle Scholar
  33. [33]
    Qiu, X. H.; Wang, C.; Zeng, Q. D.; Xu, B.; Yin, S.; Wang, H. N.; Xu, S.; Bai, C. L. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 2000, 122, 5550–5556.CrossRefGoogle Scholar
  34. [34]
    Fu, Y. S.; Ji, S. H.; Chen, X.; Ma, X. C.; Wu, R.; Wang, C. C.; Duan, W. H.; Qiu, X. H.; Sun, B.; Zhang, P.; Jia, J. F.; Xue, Q. K. Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 2007, 99, 256601.CrossRefGoogle Scholar
  35. [35]
    Ren, J.; Meng, S.; Wang, Y. L.; Ma, X. C.; Xue Q. K. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys 2011, 134, 194706.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yabo Gao
    • 1
  • Yanfeng Zhang
    • 1
    Email author
  • Jun Ren
    • 2
  • Denghua Li
    • 3
  • Teng Gao
    • 1
  • Ruiqi Zhao
    • 1
  • Yanlian Yang
    • 3
  • Sheng Meng
    • 2
  • Chen Wang
    • 3
  • Zhongfan Liu
    • 1
    Email author
  1. 1.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations