Nano Research

, Volume 5, Issue 8, pp 531–542 | Cite as

Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses

  • Li Shang
  • René M. Dörlich
  • Vanessa Trouillet
  • Michael Bruns
  • G. Ulrich Nienhaus
Research Article

Abstract

Ultrasmall silver nanoclusters (AgNCs) are a novel type of fluorescent nanoprobes that have aroused a great deal of interest in recent years. In view of many promising applications in biological research, it is of great importance to explore their behavior in the complex biological environment. In this study, interactions of AgNCs with a model protein, human serum albumin (HSA), have been systematically investigated by using a variety of techniques including absorption spectroscopy, steady-state and time-resolved fluorescence, as well as circular dichroism spectroscopy. The results show that the physicochemical properties of both proteins and AgNCs undergo changes upon their interactions; however, it appears that the overall conformation of HSA remains essentially unaffected in the complex. Binding of HSA to AgNCs was assessed by measuring tryptophan fluorescence quenching of HSA by AgNCs. Furthermore, biological implications of protein adsorption were quantitatively explored by evaluating responses of HeLa cells to AgNC exposure through live-cell fluorescence microscopy and a cytotoxicity test, revealing that protein adsorption has a significant effect on the biological response to AgNC exposure.

Keywords

Silver nanoclusters protein adsorption cytotoxicity cellular uptake fluorescent probes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cao, Y. C. Nanomaterials for biomedical applications. Nanomedicine 2008, 3, 467–469.CrossRefGoogle Scholar
  2. [2]
    Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano-conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.CrossRefGoogle Scholar
  3. [3]
    Chi, X. Q.; Huang, D. T.; Zhao, Z. H.; Zhou, Z. J.; Yin, Z. Y.; Gao, J. H. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 2012, 33, 189–206.CrossRefGoogle Scholar
  4. [4]
    Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.CrossRefGoogle Scholar
  5. [5]
    Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 2007, 58, 409–431.CrossRefGoogle Scholar
  6. [6]
    Sharma, J.; Yeh, H. C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun. 2010, 46, 3280–3282.CrossRefGoogle Scholar
  7. [7]
    Patel, S. A.; Richards, C. I.; Hsiang, J. C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc. 2008, 130, 11602–11603.CrossRefGoogle Scholar
  8. [8]
    Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.CrossRefGoogle Scholar
  9. [9]
    Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.CrossRefGoogle Scholar
  10. [10]
    Yu, J. H.; Choi, S. M.; Richards, C. I.; Antoku, Y.; Dickson, R. M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008, 84, 1435–1439.CrossRefGoogle Scholar
  11. [11]
    Diez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.CrossRefGoogle Scholar
  12. [12]
    Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.CrossRefGoogle Scholar
  13. [13]
    Huang, S.; Pfeiffer, C.; Hollmann, J.; Friede, S.; Chen, J. J. C.; Beyer, A.; Haas, B.; Volz, K.; Heimbrodt, W.; Montenegro Martos, J. M., et al. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 2012, 28, 8915–8919.CrossRefGoogle Scholar
  14. [14]
    Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934.CrossRefGoogle Scholar
  15. [15]
    Yu, J.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 46, 2028–2030.CrossRefGoogle Scholar
  16. [16]
    Yin, J. J.; He, X. X.; Wang, K. M.; Qing, Z. H.; Wu, X.; Shi, H.; Yang, X. H. One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 2012, 4, 110–112.CrossRefGoogle Scholar
  17. [17]
    Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2050–2055.CrossRefGoogle Scholar
  18. [18]
    Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.CrossRefGoogle Scholar
  19. [19]
    Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 2009, 4, 577–580.CrossRefGoogle Scholar
  20. [20]
    Jiang, X.; Weise, S.; Hafner, M.; Röcker, C.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 2010, 7, S5–S13.CrossRefGoogle Scholar
  21. [21]
    Treuel, L.; Nienhaus, G. U. Toward a molecular understanding of nanoparticle-protein interactions. Biophys. Rev. 2012, 4, 137–147.CrossRefGoogle Scholar
  22. [22]
    Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 2012, 8, 661–665.CrossRefGoogle Scholar
  23. [23]
    Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265–14270.CrossRefGoogle Scholar
  24. [24]
    Shang, L.; Nienhaus, G. U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 2012, DOI: 10.1007/s12551-012-0076-9.Google Scholar
  25. [25]
    Xie, J.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.CrossRefGoogle Scholar
  26. [26]
    Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T. Protein-protected luminescent noble metal quantum clusters: An emerging trend in atomic cluster nanoscience. Nano Rev. 2012, 3, 14767.Google Scholar
  27. [27]
    Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem. Mater. 2010, 22, 4364–4371.CrossRefGoogle Scholar
  28. [28]
    Vinelli, A.; Primiceri, E.; Brucale, M.; Zuccheri, G.; Rinaldi, R.; Samorì, B. Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microsc. Res. Techniq. 2008, 71, 870–879.CrossRefGoogle Scholar
  29. [29]
    Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.CrossRefGoogle Scholar
  30. [30]
    Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.CrossRefGoogle Scholar
  31. [31]
    Cathcart, N.; Kitaev, V. Silver nanoclusters: single-stage scaleable synthesis of monodisperse species and their chirooptical properties. J. Phys. Chem. C 2010, 114, 16010–16017.CrossRefGoogle Scholar
  32. [32]
    Buffat, P. A. Dynamical behaviour of nanocrystals in transmission electron microscopy: Size, temperature or irradiation effects. Philos. T. Roy. Soc. A 2003, 361, 291–295.CrossRefGoogle Scholar
  33. [33]
    Baker, M. Nanotechnology imaging probes: Smaller and more stable. Nat. Methods 2010, 7, 957–962.CrossRefGoogle Scholar
  34. [34]
    Zhao, S. Q.; Zhou, Y. L.; Zhao, K.; Liu, Z.; Han, P.; Wang, S. F.; Xiang, W. F.; Chen, Z. H.; Lü, H. B.; Cheng, B. L., et al. Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition. Physica B 2006, 373, 154–156.CrossRefGoogle Scholar
  35. [35]
    Kummer, K.; Vyalikh, D. V.; Gavrila, G.; Kade, A.; Weigel-Jech, M.; Mertig, M.; Molodtsov, S. L. High-resolution photoelectron spectroscopy of self-assembled mercaptohexanol monolayers on gold surfaces. J. Electron Spectrosc. Relat. Phenom. 2008, 163, 59–64.CrossRefGoogle Scholar
  36. [36]
    Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769–2776.CrossRefGoogle Scholar
  37. [37]
    Tang, Z. H.; Xu, B.; Wu, B. H.; Germann, M. W.; Wang, G. L. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. J. Am. Chem. Soc. 2010, 132, 3367–3374.CrossRefGoogle Scholar
  38. [38]
    Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955–10963.Google Scholar
  39. [39]
    Nallathamby, P. D.; Xu, X. H. N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale 2010, 2, 942–952.CrossRefGoogle Scholar
  40. [40]
    Shang, L.; Wang, Y. Z.; Jiang, J. G.; Dong, S. J. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007, 23, 2714–2721.CrossRefGoogle Scholar
  41. [41]
    Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. BBA-Proteins Proteom. 2008, 1784, 1020–1027.CrossRefGoogle Scholar
  42. [42]
    Malta, O. L. Energy transfer between molecules and small metallic particles. Phys. Lett. A 1986, 114, 195–197.CrossRefGoogle Scholar
  43. [43]
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York, 2006.CrossRefGoogle Scholar
  44. [44]
    Mariam, J.; Dongre, P. M.; Kothari, D. C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 2011, 21, 2193–2199.CrossRefGoogle Scholar
  45. [45]
    Fan, C. H.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nano-particles. Proc. Natl. Acad. Sci. U S A 2003, 100, 6297–6301.CrossRefGoogle Scholar
  46. [46]
    Ghosh, S. K.; Pal, A.; Kundu, S.; Nath, S.; Pal, T. Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles. Chem. Phys. Lett. 2004, 395, 366–372.CrossRefGoogle Scholar
  47. [47]
    Lacerda, S. H. D.; Park, J. J.; Meuse, C.; Pristinski, D.; Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2009, 4, 365–379.CrossRefGoogle Scholar
  48. [48]
    Zhang, D. M.; Neumann, O.; Wang, H.; Yuwono, V. M.; Barhoumi, A.; Perham, M.; Hartgerink, J. D.; Wittung-Stafshede, P.; Halas, N. J. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009, 9, 666–671.CrossRefGoogle Scholar
  49. [49]
    Wang, J.; Jensen, U. B.; Jensen, G. V.; Shipovskov, S.; Balakrishnan, V. S.; Otzen, D.; Pedersen, J. S.; Besenbacher, F.; Sutherland, D. S. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 2011, 11, 4985–4991.CrossRefGoogle Scholar
  50. [50]
    Ohulchanskyy, T. Y.; Roy, I.; Yong, K. T.; Pudavar, H. E.; Prasad, P. N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 162–175.CrossRefGoogle Scholar
  51. [51]
    Hedde, P. N.; Nienhaus, G. U. Optical imaging of nanoscale cellular structures. Biophys. Rev. 2010, 2, 147–158.CrossRefGoogle Scholar
  52. [52]
    Jiang, X. E.; Röcker, C.; Hafner, M.; Brandholt, S.; Dörlich, R. M.; Nienhaus, G. U. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4, 6787–6797.CrossRefGoogle Scholar
  53. [53]
    Lunov, O.; Zablotskii, V.; Syrovets, T.; Röcker, C.; Tron, K.; Nienhaus, G. U.; Simmet, T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 2011, 32, 547–555.CrossRefGoogle Scholar
  54. [54]
    Iversen, T. G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.CrossRefGoogle Scholar
  55. [55]
    Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768.CrossRefGoogle Scholar
  56. [56]
    Zhu, Y.; Li, W. X.; Li, Q. N.; Li, Y. G.; Li, Y. F.; Zhang, X. Y.; Huang, Q. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 2009, 47, 1351–1358.CrossRefGoogle Scholar
  57. [57]
    Horie, M.; Nishio, K.; Fujita, K.; Endoh, S.; Miyauchi, A.; Saito, Y.; Iwahashi, H.; Yamamoto, K.; Murayama, H.; Nakano, H., et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol. 2009, 22, 543–553.CrossRefGoogle Scholar
  58. [58]
    Ge, C. C.; Du, J. F.; Zhao, L. N.; Wang, L. M.; Liu, Y.; Li, D. H.; Yang, Y. L.; Zhou, R. H.; Zhao, Y. L.; Chai, Z. F., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U S A 2011, 108, 16968–16973.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Li Shang
    • 1
  • René M. Dörlich
    • 1
  • Vanessa Trouillet
    • 2
  • Michael Bruns
    • 2
  • G. Ulrich Nienhaus
    • 1
    • 3
  1. 1.Institute of Applied Physics and Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Materials Research IIIKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations