Advertisement

Nano Research

, Volume 5, Issue 8, pp 513–520 | Cite as

Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2

  • H. T. Beyene
  • J. W. Weber
  • M. A. Verheijen
  • M. C. M. van de Sanden
  • M. CreatoreEmail author
Research Article

Abstract

The evolution of the film thickness and plasmonic properties for sputtered deposited Au nanoparticles on SiO2 layers have been monitored in real time using in situ spectroscopic ellipsometry in the photon energy range 0.75–4.1 eV. The spectroscopic ellipsometry data were analyzed with an optical model in which the optical constants for the Au nanoparticles were parameterized by B-splines which simultaneously provide an accurate determination of an effective thickness and an effective dielectric function. The effective thickness is interpreted with support of transmission and scanning electron microscopy and Rutherford backscattering measurements. Further parameterization of the optical constants by physical oscillators in the isolated spherical particle region allows the microstructural parameters such as size and Au fraction to be extracted. Real time in situ monitoring allows the growth of nanoparticles from the nucleation phase to near percolation to be followed, and there is a red-shift of the plasmon resonance absorption peak as the nanoparticles increase in size and their interaction becomes stronger.

Keywords

Nanoparticles nucleation and growth real time in situ spectroscopic ellipsometry plasmonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pinchuk, A.; von Plessen, G.; Kreibig, U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D-Appl. Phys. 2004, 37, 3133–3139.CrossRefGoogle Scholar
  2. [2]
    Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32–41.CrossRefGoogle Scholar
  3. [3]
    Toudert, J.; Babonneau, D.; Simonot, L.; Camelio, S.; Girardeau, T. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: The influence of nanocluster size, shape and organization. Nanotechnology 2008, 19, 125709.CrossRefGoogle Scholar
  4. [4]
    Protopapa, M. L. Surface plasmon resonance of metal nano-particles sandwiched between dielectric layers: Theoretical modelling. Appl.Optics 2009, 48, 778–785.CrossRefGoogle Scholar
  5. [5]
    Sancho-Parramon, J. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: A numerical study of size confinement and interparticle interaction effects. Nanotechnology 2009, 20, 235706.CrossRefGoogle Scholar
  6. [6]
    Sawyer, W. G.; Freudenberg, K. D.; Bhimaraj, P.; Schadler, L. S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003, 254, 573–580.CrossRefGoogle Scholar
  7. [7]
    Haes, A. J.; van Duyne, R. P. Probing the long range distance dependence of noble metal nanoparticles. In Proceedings of Quantum Dots, Nanoparticles and Nanowires (QDNN 2004), Boston, USA, 2004, pp 409–414..Google Scholar
  8. [8]
    Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 2010, 9, 205–213.CrossRefGoogle Scholar
  9. [9]
    Evanoff, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1223.CrossRefGoogle Scholar
  10. [10]
    Shi, H. Z.; Zhang, L. D.; Cai, W. P. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica Mater. Res. Bull. 2000, 35, 1689–1695.CrossRefGoogle Scholar
  11. [11]
    Biederman, H.; Martinu, L.; Slavinska, D.; Chudacek, I. Plasma deposition and properties of composite metal polymer and metal hard carbon-films. Pure Appl. Chem. 1988, 60, 607–618.CrossRefGoogle Scholar
  12. [12]
    Faupel, F.; Schürmann, U.; Takele, H.; Zaporojtchenko, V. Optical and electrical properties of polymer metal nano-composites prepared by magnetron co-sputtering Thin Solid Films 2006, 515, 801–804.CrossRefGoogle Scholar
  13. [13]
    Takele, H.; Greve, H.; Pochstein, C.; Zaporojtchenko, V.; Faupel, F. Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 2006, 17, 3499–3505.CrossRefGoogle Scholar
  14. [14]
    Mandal, S. K.; Roy, R. K.; Pal, A. K. Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films. J. Phys. D-Appl. Phys. 2003, 36, 261–265.CrossRefGoogle Scholar
  15. [15]
    Kim, D. G.; Koyama, E.; Tokuhisa, H.; Koshizaki, N.; Do Kim, Y. Tunable aggregation of Au nanoparticles in Au/SiO2 composite film and its photo-absorbance. Appl. Phys. A-Mater. Sci. Process. 2008, 92, 263–266.CrossRefGoogle Scholar
  16. [16]
    Jun, H. S.; Lee, K. S.; Yoon, S. H.; Lee, T. S.; Kim, I. H.; Jeong, J. H.; Cheong, B.; Kim, A. S.; Cho, K. M.; Kim, W. M. 3rd order nonlinear optical properties of Au: SiO2 nano-composite films with varying Au particle size. Phys. Stat. Sol. A-Appl. Mat. 2006, 203, 1211–1216.CrossRefGoogle Scholar
  17. [17]
    Martinu, L.; Poitras, D. Plasma deposition of optical films and coatings: A review. J. Vac. Sci. Technol. A 2000, 18, 2619–2645.CrossRefGoogle Scholar
  18. [18]
    Suhr, H.; Etspuler, A.; Feurer, E.; Oehr, C. Plasma-deposited metal-containing polymer-films. Plasma Chem. Plasma Process. 1988, 8, 9–17.CrossRefGoogle Scholar
  19. [19]
    Fracassi, F.; D’Agostino, R. Plasma processed surfaces for biomedical devices: PEO-like, Ag/PEO-like, -COOH functional and micro-patterned coatings. VIDE-SCIENCE TECNIQUE ET APPLICATIONS 2002, 57, 40–48.Google Scholar
  20. [20]
    Beyene, H. T.; Tichelaar, F. D.; Peeters, P.; Kolev, I.; van de Sanden, M. C. M.; Creatore, M. Hybrid Sputtering-Remote PECVD Deposition of Au Nanoparticles on SiO2 Layers for Surface Plasmon Resonance-Based Colored Coatings. Plasma Process. Polym. 2010, 7, 657–664.CrossRefGoogle Scholar
  21. [21]
    Beyene, H. T.; Tichelaar, F. D.; Verheijen, M. A.; van de Sanden, M. C. M.; Creatore, M. Plasma-assisted depositon of Au/SiO2 multi-layers as surface plasmon resonance-based red-colored coatings. Plasmonics 2011, 6, 255–260.CrossRefGoogle Scholar
  22. [22]
    Cohen, R. W.; Cody, G. D.; Coutts, M. D.; Abeles, B. Optical properties of granular silver and gold films. Phys. Rev. B 1973, 8, 3689–3701.CrossRefGoogle Scholar
  23. [23]
    Kreibig, U.; Vollmer, M. Optical properties of metal clusters. Springer-Verlag: Berline Heidelberg, 1995.Google Scholar
  24. [24]
    Wormeester, H.; Stefan Kooij, E.; Poelsema, B. Effective dielectric response of nanostructured layers. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 756–763.CrossRefGoogle Scholar
  25. [25]
    Nguyen, H. V.; An, I.; Collins, R. W. Evolution of the optical functions of thin-film aluminium: A real-time spectroscopic ellipsometry study. Phys. Rev. B 1993, 47, 3947–3965.CrossRefGoogle Scholar
  26. [26]
    Oates, T. W. H.; McKenzie, D. R.; Bilek, M. M. M. Percolation threshold in ultrathin titanium films determined by in situ spectroscopic ellipsometry. Phy. Rev. B 2004, 70, 195406.CrossRefGoogle Scholar
  27. [27]
    Oates, T. W. H.; Mücklich, A. Evolution of plasmon resonances during plasma deposition of silver nanoparticles. Nanotechnology 2005, 16, 2606–2611.CrossRefGoogle Scholar
  28. [28]
    Arwin, H.; Aspnes, D. E. Unambiguous determination of thickness and dielectric function of thin films by spectroscopic ellipsometry. Thin Solid Films 1984, 113, 101–113.CrossRefGoogle Scholar
  29. [29]
    Hövel, M.; Gompf, B.; Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 2010, 81, 035402.CrossRefGoogle Scholar
  30. [30]
    LončariĆ, M.; Sancho-Parramon, J.; Zorc, H. Optical pro-perties of gold island films: A spectroscopic ellipsometry study. Thin Solid Films 2011, 519, 2946–2950.CrossRefGoogle Scholar
  31. [31]
    Dalacu, D.; Martinu, L. Optical properties of discontinuous gold films: Finite-size effects. J. Opt. Soc. Am. B 2001, 18, 85–92.CrossRefGoogle Scholar
  32. [32]
    Kuzmenko, A. B. Kramers-Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 2005, 76, 083108.CrossRefGoogle Scholar
  33. [33]
    Lee, S.; Hong, J.; OH, S.-G. Real-time ellipsometry studies of gold thin-film Growth. Jpn. J. Appl. Phys. 1997, 36, 3662–3668.CrossRefGoogle Scholar
  34. [34]
    Kooij, E. S.; Wormeester, H.; Brouwer, E. A. M.; van Vroonhoven, E.; van Silfhout, A.; Poelsema, B. Optical Characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir 2002, 18, 4401–4413.CrossRefGoogle Scholar
  35. [35]
    Langereis, E.; Heil, S. B. S.; knoops, H. C. M.; Keuning, W.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Phys. D: Appl. Phys. 2009, 42, 073001.CrossRefGoogle Scholar
  36. [36]
    Losurdo, M.; Bergmair, M.; Bruno, G.; Cattelan, D.; Cobet, C.; de Martino, A.; Fleischer, K.; Dohcevic-Mitrovic, Z.; Esser, N.; Galliet, M. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-art, potential, and perspectives. J. Nanopart. Res. 2009, 11, 1521–1554.CrossRefGoogle Scholar
  37. [37]
    Johs, B.; Hale, J. -S. Dielectric function representation by B-splines. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 715–719.CrossRefGoogle Scholar
  38. [38]
    Weber, J. W.; Hansen, T. A. R.; van de Sanden, M. C. M.; Engeln, R. B-spine parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon. J. Appl. Phys. 2009, 106, 123503.CrossRefGoogle Scholar
  39. [39]
    Weber, J. W.; Calado, V. E.; van de Sanden, M. C. M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 091904.CrossRefGoogle Scholar
  40. [40]
    Barreca, D.; Gasparotto, A.; Tondello, E.; Bruno, G.; Losurdo, M. Influence of porcess parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering. J. Appl. Phys. 2004, 96, 1655.CrossRefGoogle Scholar
  41. [41]
    Zaporojtchenko, V.; Zekonyte, J.; Biswas, A.; Faupel, F. Controlled growth of nano-size metal clusters on polymers by using VPD method. Surf. Sci. 2003, 532, 300–305.CrossRefGoogle Scholar
  42. [42]
    Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 2001, 105, 3441–3452.CrossRefGoogle Scholar
  43. [43]
    Hövel, H.; Fritz, S.; Hilger, A.; Kreibig, U. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phy. Rev. B 1993, 48, 18178.CrossRefGoogle Scholar
  44. [44]
    LončariĆ, M.; Sancho-Parramon, J.; Zorc, H. Optical pro-perties of gold island films: A spectroscopic ellipsometry study. Thin Solid Films 2011, 519, 2946.CrossRefGoogle Scholar
  45. [45]
    Sheng, J. W.; Kadono, K.; Yazawa, T. Nanosized gold cluster formation in selected areas of soda-lime silicate glass. J. Non-Cryst. Solids 2003, 324, 295–299.CrossRefGoogle Scholar
  46. [46]
    Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.CrossRefGoogle Scholar
  47. [47]
    Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.CrossRefGoogle Scholar
  48. [48]
    Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 8410–8426.CrossRefGoogle Scholar
  49. [49]
    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.CrossRefGoogle Scholar
  50. [50]
    Halas, N. J.; Lal, S.; Chang, W. -S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.CrossRefGoogle Scholar
  51. [51]
    Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. T. Beyene
    • 1
    • 2
  • J. W. Weber
    • 2
  • M. A. Verheijen
    • 2
  • M. C. M. van de Sanden
    • 2
    • 3
  • M. Creatore
    • 2
    Email author
  1. 1.Materials innovation institute (M2i)DelftThe Netherlands
  2. 2.Department of Applied Physics, Group plasma and materials processingEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Dutch Institute for Fundamental Energy Research (DIFFER)NieuwegeinThe Netherlands

Personalised recommendations