Advertisement

Nano Research

, Volume 5, Issue 7, pp 494–503 | Cite as

Fluorophore-photochrome co-embedded polymer nanoparticles for photoswitchable fluorescence bioimaging

  • Tianshe Yang
  • Qian Liu
  • Shouzhi PuEmail author
  • Zesheng Dong
  • Chunhui Huang
  • Fuyou LiEmail author
Research Article

Abstract

Photoswitchable polymer nanoparticles (ps-PNPs) have been constructed by emulsion polymerization through embedding an iridium(III) complex, [Ir(bt)2(pic)](bt = phenylbenzothiazole, pic = picolinate), as a fluorophore and a diarylethene derivative (DTE) as a photochrome. The ps-PNPs show reversible luminescence modulation with DTE switching using UV light in aqueous solution and even in living cells. Such luminescent modulation only occurred in polymer nanoparticles and not in a simple mixed solution with low concentrations of [Ir(bt)2(pic)] and DTE. The ps-PNPs displayed good cellular uptake and fast intracellular luminescence modulation by photoswitching, indicating the nanoparticles could be developed as photoswitchable luminescent probes for a diversity of bioimaging applications.

Keywords

Photoswithable imaging polymer nanoparticles fluorophore-photochrome living cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_235_MOESM1_ESM.pdf (387 kb)
Supplementary material, approximately 387 KB.

References

  1. [1]
    Zhao, Q.; Huang, C. H.; Li, F. Y. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 2011, 40, 2508–2524.CrossRefGoogle Scholar
  2. [2]
    Lo, K. K. W.; Li, S. P. Y.; Zhang, K. Y. Development of luminescent iridium(III) polypyridine complexes as chemical and biological probes. New J. Chem. 2011, 35, 265–287.CrossRefGoogle Scholar
  3. [3]
    Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.CrossRefGoogle Scholar
  4. [4]
    Bates, M.; Huang, B.; Dempsey, G. T.; Zhuang, X. W. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007, 317, 1749–1753.CrossRefGoogle Scholar
  5. [5]
    Hu, D. H.; Tian, Z. Y.; Wu, W. W.; Wan, W.; Li, A. D. Q. Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J. Am. Chem. Soc. 2008, 130, 15279–15281.CrossRefGoogle Scholar
  6. [6]
    Tian, Z. Y.; Wu, W. W.; Wan, W.; Li, A. D. Q. Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J. Am. Chem. Soc. 2009, 131, 4245–4252.CrossRefGoogle Scholar
  7. [7]
    Piao, X. J.; Zou, Y.; Wu, J. C.; Li, C. Y.; Yi, T. Multiresponsive switchable diarylethene and its application in bioimaging. Org. Lett. 2009, 11, 3818–3821.CrossRefGoogle Scholar
  8. [8]
    Irie, M. Diarylethenes for memories and switches. Chem. Rev. 2000, 100, 1685–1716.CrossRefGoogle Scholar
  9. [9]
    Tian, H.; Yang, S. J. Recent progress on diarylethene based on photochromic switches. Chem. Soc. Rev. 2004, 33, 85–97.CrossRefGoogle Scholar
  10. [10]
    Zhou, Z. G.; Xiao, S. Z.; Xu, J.; Liu, Z. Q.; Shi, M.; Li, F. Y.; Yi, T.; Huang, C. H. Modulation of photochromic property in an organoboron-based diarylethene by fluoride ion. Org. Lett. 2006, 8, 3911–3914.CrossRefGoogle Scholar
  11. [11]
    Zou, Y.; Yi, T.; Xiao, S. Z.; Li, F. Y.; Li, C. Y.; Gao, X.; Wu, J. C.; Yu, M. X.; Huang, C. H. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J. Am. Chem. Soc. 2008, 130, 15750–15751.CrossRefGoogle Scholar
  12. [12]
    Tan, W. J.; Zhou, J.; Li, F. Y.; Yi, T.; Tian, H. Visible light-triggered photoswitchable diarylethene-based iridium(III) complexes for imaging living cells. Chem. Asian J. 2011, 6, 1263–1268.CrossRefGoogle Scholar
  13. [13]
    Al-Atar, U.; Fernandes, R.; Johnsen, B.; Baillie, D.; Branda N. R. A Photocontrolled molecular switch regulates paralysis in a living organism. J. Am. Chem. Soc. 2009, 131, 15966–15967.CrossRefGoogle Scholar
  14. [14]
    Yildiz, I.; Deniz, E.; Raymo, F. M. Fluorescence modulation with photochromic switches in nanostructured constructs. Chem. Soc. Rev. 2009, 38, 1859–1867.CrossRefGoogle Scholar
  15. [15]
    Tian, H.; Feng, Y. L. Next step of photochromic switches? J. Mater. Chem. 2008, 18, 1617–1622.CrossRefGoogle Scholar
  16. [16]
    Zhou, Z. G.; Hu, H.; Yang, H.; Yi, T.; Huang, K. W.; Yu, M. X.; Li, F. Y.; Huang, C. H. Up-conversion luminescent switch based on photochromic diarylethene and rare earth nanophosphors. Chem. Commun. 2008, 4786–4788.Google Scholar
  17. [17]
    Wang, S.; Shen, W.; Feng Y. L.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun. 2006, 1497–1499.Google Scholar
  18. [18]
    Tian, H.; Wang, S. Photochromic bisthienylethene as multi-function switches. Chem. Commun. 2007, 781–792.Google Scholar
  19. [19]
    Wu, W.; Yao, L. M.; Yang, T. S.; Yin, R. Y.; Li, F. Y.; Yu, Y. L. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 2011, 133, 15810–15813.CrossRefGoogle Scholar
  20. [20]
    Ramsteiner, I. B.; Hartschuh, A.; Port, H. Relexation pathways and fs dynamics in a photoswitchable intramolecular D→A energy transfer system. Chem. Phys. Lett. 2001, 343, 83–90.CrossRefGoogle Scholar
  21. [21]
    Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.CrossRefGoogle Scholar
  22. [22]
    Boyer, J. C.; Carling, C. J.; Gates, B. D.; Branda, N. R. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 2010, 132, 15766–15772.CrossRefGoogle Scholar
  23. [23]
    Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T.; A digital fluorecent molecular photoswitch. Nature 2002, 420, 759–760.CrossRefGoogle Scholar
  24. [24]
    Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 2002, 124, 7481–7489.CrossRefGoogle Scholar
  25. [25]
    Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J. Am. Chem. Soc. 2004, 126, 14843–14849.CrossRefGoogle Scholar
  26. [26]
    Fukaminato, T.; Doi, T.; Tamaoki, N.; Okuno, K.; Ishibashi, Y.; Miyasaka, H.; Irie, M. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J. Am. Chem. Soc. 2011, 133, 4984–4990.CrossRefGoogle Scholar
  27. [27]
    Zhu, M. Q.; Zhu, L. Y.; Han, J. J.; Wu, W. W.; Hurst, J. K.; Li, A. D. Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 2006, 128, 4303–4309.CrossRefGoogle Scholar
  28. [28]
    Zhu, L. Y.; Wu, W. W.; Zhu, M. Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 2007, 129, 3524–3526.CrossRefGoogle Scholar
  29. [29]
    Wong, H. L.; Ko, C. C.; Lam, W. H.; Zhu, N. Y.; Yam, V. W. W. Design and synthesis of a new class of photochromic diarylethene-containing dithieno[3,2-b:2′,3′-d]pyrroles and their switchable luminescence properties. Chem. Eur. J. 2009, 15, 10005–10009.CrossRefGoogle Scholar
  30. [30]
    Ko, C. C.; Yam, V. W. W. Transition metal complexes with photochromic ligands-photosensitization and photoswitchable properties. J. Mater. Chem. 2010, 20, 2063–2070.CrossRefGoogle Scholar
  31. [31]
    Li, Z. X.; Liao, L. Y.; Sun, W.; Xu, C. H.; Zhang, C.; Fang, C. J.; Yan, C. H. Reconfigurable cascade circuit in a photo- and chemical-switchable fluorescent diarylethene derivative. J. Phys. Chem. C 2008, 112, 5190–5196.CrossRefGoogle Scholar
  32. [32]
    Fölling, J.; Polyakova, S.; Belov, V.; van Blaaderen, A.; Bossi, M. L.; Hell, S. W. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 2008, 4, 134–142.CrossRefGoogle Scholar
  33. [33]
    Straight, S. D.; Liddell, P. A.; Terazono, Y.; Moore, T. A.; Moore, A. L.; Gust, D. All-photonic molecular XOR and NOR logic gates based on photochemical control of fluorescence in a fulgimide-porphyrin-dithienylethene triad. Adv. Funct. Mater. 2007, 17, 777–785.CrossRefGoogle Scholar
  34. [34]
    Yildiz, I.; Impellizzeri, S.; Deniz, E.; McCaughan, B.; Callan, J. F.; Raymo, F. M. Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies. J. Am. Chem. Soc. 2011, 133, 871–879.CrossRefGoogle Scholar
  35. [35]
    Zhao, Q.; Yu, M. X.; Shi, L. X.; Liu, S. J.; Li, C. Y.; Shi, M.; Zhou, Z. G.; Huang, C. H.; Li, F. Y. Cationic iridium(III) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics 2010, 29, 1085–1091.CrossRefGoogle Scholar
  36. [36]
    Pu, S. Z.; Luo, F. S.; Wang R. J.; Yang, T. S. 1-(2,5-Dimethyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-2-(5-formyl-2-methyl-3-thienyl)cyclopent-1-ene: A new photochromic diarylethene compound. Acta Cryst. 2006, E62, o1194–o1196.Google Scholar
  37. [37]
    Yang, T. S.; Xia, A.; Liu, Q.; Shi, M.; Wu, H. Z.; Xiong, L. Q.; Huang, C. H.; Li, F. Y. Polymer nanoparticles with an embedded phosphorescent osmium(II) complex for cell imaging. J. Mater. Chem. 2011, 21, 5360–5367.CrossRefGoogle Scholar
  38. [38]
    Li, C. Y.; Yu, M. X.; Sun, Y.; Wu, Y. Q.; Huang, C. H.; Li, F. Y. A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells. J. Am. Chem. Soc. 2011, 133, 11231–11239.CrossRefGoogle Scholar
  39. [39]
    Van Der Meer, B. W.; Coker, G.; Chen, S. Y. S. Resonance Energy Transfer: Theory and Data; VCH: New York, 1994.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina
  2. 2.Jiangxi Key Laboratory of Organic ChemistryJiangxi Science & Technology Normal UniversityNanchangChina

Personalised recommendations