Nano Research

, Volume 5, Issue 7, pp 486–493 | Cite as

A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level

  • Jiayu Sun
  • Jiechao Ge
  • Weimin Liu
  • Xueliang Wang
  • Zhiyuan Fan
  • Wenwen Zhao
  • Hongyan Zhang
  • Pengfei WangEmail author
  • Shuit-Tong Lee
Research Article


We report a facile assay for the rapid visual detection of lipopolysaccharide (LPS) molecules down to the low nanomolar level by taking advantage of the electrostatic interaction between LPS molecules and cysteamine-modified gold nanoparticles (CSH-Au NPs). The large amount of negatively charged groups on the LPS molecules make LPS highly negatively charged. Thus, when modified with cysteamine, the positively charged gold nanoparticles can aggregate in the presence of trace amounts of LPS. The probe is simple, does not require any advanced instrumentation, and the limit of detection (LOD) was determined to be as low as 3.3 × 10−10 mol/L. To the best of our knowledge, it is the most sensitive synthetic LPS sensor reported so far.


Lipopolysaccharide (LPS) endotoxin Gram-negative sensor gold nanoparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_234_MOESM1_ESM.pdf (458 kb)
Supplementary material, approximately 457 KB.


  1. [1]
    Seltmann, G.; Holst, O. The Bacterial Cell Wall; Springer: New York, 2002.Google Scholar
  2. [2]
    Raetz, C. R. H. Biochemistry of Endotoxins. Annu. Rev. Biochem. 1990, 59, 129–170.CrossRefGoogle Scholar
  3. [3]
    US FDA, CDER, CBER, CDRH, CVM. Guideline on validation of the Limulus amebocyte lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices; CDER, CBER, CDRH, CVM (Eds): Rockville, MD, USA, 20857, 1987.Google Scholar
  4. [4]
    Zhang, G. H.; Baek, L.; Nielsen, P. E.; Buchardt, O.; Koch, C. Sensitive quantitation of endotoxin by enzyme-linked immunosorbent assay with monoclonal antibody against Limulus peptide C. J. Clin. Microbiol. 1994, 32, 416–422.Google Scholar
  5. [5]
    Roslansky, P. F.; Novitsky, T. J. Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans. J. Clin. Microbiol. 1991, 29, 2477–2483.Google Scholar
  6. [6]
    Rangin, M.; Basu, A. Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J. Am. Chem. Soc. 2004, 126, 5038–5039.CrossRefGoogle Scholar
  7. [7]
    Voss, S; Fischer, R.; Jung, G.; Wiesmüller, K. -H.; Brock, R. A fluorescence-based synthetic LPS sensor. J. Am. Chem. Soc. 2007, 129, 554–561.CrossRefGoogle Scholar
  8. [8]
    Ganesh, V.; Bodewits, K.; Bartholdson, S. J.; Natale, D.; Campopiano, D. J.; Mareque-Rivas J. C. Effective binding and sensing of lipopolysaccharide: Combining complementary pattern recognition receptors. Angew. Chem., Int. Edit. 2009, 48, 356–360.CrossRefGoogle Scholar
  9. [9]
    Zeng, L.; Wu, J.; Dai Q.; Liu, W.; Wang, P.; Lee, C. -S. Sensing of bacterial endotoxin in aqueous solution by supramolecular assembly of pyrene derivative. Org. Lett. 2010, 12, 4014–4017.CrossRefGoogle Scholar
  10. [10]
    Wu, J. C.; Zawistowski, A.; Ehrmann, M.; Yi, T.; Schmuck, C. Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J. Am. Chem. Soc. 2011, 133, 9720–9723.CrossRefGoogle Scholar
  11. [11]
    Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.CrossRefGoogle Scholar
  12. [12]
    Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.CrossRefGoogle Scholar
  13. [13]
    Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.CrossRefGoogle Scholar
  14. [14]
    Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.CrossRefGoogle Scholar
  15. [15]
    Liu, D. B.; Wang, Z.; Jiang, X. Y. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011, 3, 1421–1433.CrossRefGoogle Scholar
  16. [16]
    Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.CrossRefGoogle Scholar
  17. [17]
    Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of poly-nucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.CrossRefGoogle Scholar
  18. [18]
    Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.CrossRefGoogle Scholar
  19. [19]
    Neely, A.; Perry, C.; Varisli, B.; Singh, A. K.; Arbneshi, T.; Senapati D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840.CrossRefGoogle Scholar
  20. [20]
    Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517.CrossRefGoogle Scholar
  21. [21]
    Lee J. -S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096.CrossRefGoogle Scholar
  22. [22]
    Darbha, G. K.; Ray, A.; Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 2007, 1, 208–214.CrossRefGoogle Scholar
  23. [23]
    Chi, H; Liu, B. H.; Guan, G. J.; Zhang, Z. P.; Han, M. -Y. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 2010, 135, 1070–1075.CrossRefGoogle Scholar
  24. [24]
    Liu, J. W.; Lu, Y. Fast Colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94.CrossRefGoogle Scholar
  25. [25]
    Zhou, Y; Wang, S. X.; Zhang, K.; Jiang, X. Y. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 2008, 47, 7454–7456.CrossRefGoogle Scholar
  26. [26]
    Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 8601–8604.CrossRefGoogle Scholar
  27. [27]
    Ai, K.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.CrossRefGoogle Scholar
  28. [28]
    Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812.CrossRefGoogle Scholar
  29. [29]
    Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem. Int. Ed. 2010, 49, 5472–5475.CrossRefGoogle Scholar
  30. [30]
    Jiang, Y.; Zhao, H.; Lin, Y. Q.; Zhu, N. N.; Ma, Y. R.; Mao, L. Q. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 4800–4804.CrossRefGoogle Scholar
  31. [31]
    Kong, B.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yu, Y. Y.; Shi, G. Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 2011, 50, 1837–1840.CrossRefGoogle Scholar
  32. [32]
    Zhang, J.; Wang, L. H.; Pan, D.; Song, S. P.; Boey, F. Y. C.; Zhang, H.; Fan, C. H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4, 1196–1200.CrossRefGoogle Scholar
  33. [33]
    Qi, W. J.; Wu, D.; Ling, J.; Huang, C. Z. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun. 2010, 4893–4895.Google Scholar
  34. [34]
    Wu, Z. J.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y. J.; Li, X. J.; Yuan, Z. B. Colorimetric detection of melamine during the formation of gold nanoparticles. Biosens. Bioelectron. 2011, 26, 2574–2578.CrossRefGoogle Scholar
  35. [35]
    Kuang, H.; Chen, W.; Yan, W. J.; Xu, L. G.; Zhu, Y. Y.; Liu, L. Q.; Chu, H. Q.; Peng, C. F.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens. Bioelectron. 2011, 26, 2032–2037.CrossRefGoogle Scholar
  36. [36]
    Sun, J. Y.; Ge, J. H.; Liu, W. M.; Fan, Z. Y.; Zhang, H. Y.; Wang, P. F. Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nano-particles supramolecular assembly. Chem. Commun. 2011, 9888–9890.Google Scholar
  37. [37]
    Shands, J. W. Evidence for a bilayer structure in Gram-negative lipopolysaccharide-Relationship to toxicity. Infect. Immun. 1971, 4, 167–172.Google Scholar
  38. [38]
    Mayberrycarson, K. J.; Roth, I. L.; Smith, P. F. Ultrastructure of lipopolysaccharide isolated from thermoplasma-acidophilum. J. Bacteriol. 1975, 121, 700–703.Google Scholar
  39. [39]
    Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. 2004, 1978–1979.Google Scholar
  40. [40]
    Chan, S.; Horner, S. R.; Fauchet, P. M.; Miller, B. L. Identification of Gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 2001, 123, 11797–11798.CrossRefGoogle Scholar
  41. [41]
    Li, C. H.; Budge, L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage P. B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc. 1999, 121, 931–940.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiayu Sun
    • 1
  • Jiechao Ge
    • 1
  • Weimin Liu
    • 1
  • Xueliang Wang
    • 1
  • Zhiyuan Fan
    • 1
  • Wenwen Zhao
    • 1
  • Hongyan Zhang
    • 1
  • Pengfei Wang
    • 1
    Email author
  • Shuit-Tong Lee
    • 2
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials ScienceCity University of Hong KongHong KongChina

Personalised recommendations