Advertisement

Nano Research

, Volume 5, Issue 7, pp 477–485 | Cite as

One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries

  • Zheng Xing
  • Zhicheng JuEmail author
  • Jian YangEmail author
  • Huayun Xu
  • Yitai Qian
Research Article

Abstract

Binary transition metal oxides are considered as promising anode materials for lithium-ion batteries (LIB), because they can effectively overcome the drawbacks of simple oxides. Here, a one-step hydrothermal method is described for the synthesis of regular ZnFe2O4 octahedrons about 200 nm in size at a low temperature without further annealing being required. The ZnFe2O4 octahedrons were characterized by powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The electrochemical performance of the ZnFe2O4 octahedrons was examined in terms of cyclic voltammetry and discharge/charge profiles. The ZnFe2O4 octahedrons exhibit a high capacity of 910 mA·h/g at 60 mA/g between 0.01 and 3.0 V after 80 cycles. They also deliver a reversible specific capacity of 730 mA·h/g even after 300 cycles at 1000 mA/g, a much better performance than those in previous reports. A set of reactions involved in the discharge/charge processes are proposed on the basis of ex situ high-resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) patterns of the electrode materials. The insights obtained will be of benefit in the design of future anode materials for lithium ion batteries.

Keywords

Hydrothermal method ZnFe2O4 octahedrons Li-ion batteries anode materials rate performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 2006, 110, 14754–14760.CrossRefGoogle Scholar
  2. [2]
    Wang, G.; Gao, X. P.; Shen, P. W. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 2009, 192, 719–723.CrossRefGoogle Scholar
  3. [3]
    Sharma, Y.; Sharma, N.; Subbarao, G.; Chowdari, B. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 2008, 179, 587–597.CrossRefGoogle Scholar
  4. [4]
    Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.CrossRefGoogle Scholar
  5. [5]
    Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sources 2007, 173, 495–501.CrossRefGoogle Scholar
  6. [6]
    Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D. K.; Kang, K. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510.CrossRefGoogle Scholar
  7. [7]
    Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J. Mater. Chem. 2011, 21, 10206–10218.CrossRefGoogle Scholar
  8. [8]
    Li, M.; Yin, Y. X.; Li, C.; Zhang, F.; Wan, L. J.; Xu, S.; Evans, D. G. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem. Commun. 2011, 48, 410–412.CrossRefGoogle Scholar
  9. [9]
    Lavela, P.; Tirado, J. L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 2007, 172, 379–387.CrossRefGoogle Scholar
  10. [10]
    NuLi, Y. N.; Chu, Y. -Q.; Qin, Q. Z. Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J. Electrochem. Soc. 2004, 151, A1077–1083.CrossRefGoogle Scholar
  11. [11]
    Sharma, Y.; Sharma, N.; Rao, G.; Chowdari, B. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 2008, 53, 2380–2385.CrossRefGoogle Scholar
  12. [12]
    Teh, P. F.; Sharma, Y.; Pramana, S. S.; Srinivasan, M. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J. Mater. Chem. 2011, 21, 14999–15008.CrossRefGoogle Scholar
  13. [13]
    Guo, X.; Lu, X.; Fang, X.; Mao, Y.; Wang, Z.; Chen, L.; Xu, X.; Yang, H.; Liu, Y. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 847–850.CrossRefGoogle Scholar
  14. [14]
    Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012, 5, 27–32.CrossRefGoogle Scholar
  15. [15]
    Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.CrossRefGoogle Scholar
  16. [16]
    Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Energy Mater. 2010, 22, E28–E62.Google Scholar
  17. [17]
    Wang, M.; Ai, Z.; Zhang, L. Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J. Phys. Chem. C 2008, 112, 13163–13170.CrossRefGoogle Scholar
  18. [18]
    Lv, H. J.; Ma, L.; Zeng, P.; Ke, D. N.; Peng, T. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J. Mater. Chem. 2010, 20, 3665–3672.CrossRefGoogle Scholar
  19. [19]
    Zhang, R.; Huang, J.; Zhao, J.; Sun, Z.; Wang, Y. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization. Energ. Fuel. 2007, 21, 2682–2687.CrossRefGoogle Scholar
  20. [20]
    Zhu, H. L.; Gu, X. Y.; Zuo, D. T.; Wang, Z. K.; Wang, N. Y.; Yao, K. H. Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room- temperature ethanol sensor. Nanotechnol. 2008, 19, 405503.CrossRefGoogle Scholar
  21. [21]
    Xu, T.; Zhou, X.; Jiang, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route. Cryst. Growth Des. 2008, 9, 192–196.CrossRefGoogle Scholar
  22. [22]
    Zhang, G. Y.; Li, C. S.; Cheng, F. Y.; Chen, J. ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensor. Actuat. B-Chem. 2007, 120, 403–410.CrossRefGoogle Scholar
  23. [23]
    Qian, H. S.; Hu, Y.; Li, Z. Q.; Yang, X. Y.; Li, L. C.; Zhang, X. T.; Xu, R. ZnO/ZnFe2O4 Magnetic fluorescent bifunctional hollow nanospheres: Synthesis, characte-rization, and their optical/magnetic properties. J. Phys. Chem. C 2010, 114, 17455–17459.CrossRefGoogle Scholar
  24. [24]
    Haetge, J.; Suchomski, C.; Brezesinski, T. Ordered mesoporous MFe2O4 (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: Template-directed synthesis and characterization of redox active trevorite. Inorg. Chem. 2010, 49, 11619–11626.CrossRefGoogle Scholar
  25. [25]
    Voorhees, P. W. Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 1992, 22, 197–215.CrossRefGoogle Scholar
  26. [26]
    Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.CrossRefGoogle Scholar
  27. [27]
    Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.CrossRefGoogle Scholar
  28. [28]
    Li, H.; Huang, X.; Chen, L. Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 1999, 123, 189–197.CrossRefGoogle Scholar
  29. [29]
    Zhang, Q.; Shi, Z.; Deng, Y.; Zheng, J.; Liu, G.; Chen, G. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309.CrossRefGoogle Scholar
  30. [30]
    Nyten, A.; Kamali, S.; Haggstrom, L.; Gustafsson, T.; Thomas, J. O. The lithium extraction/insertion mechanism in Li2FeSiO4. J. Mater. Chem. 2006, 16, 2266–2272.CrossRefGoogle Scholar
  31. [31]
    Binotto, G.; Larcher, D.; Prakash, A. S.; Herrera Urbina, R.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032–3040.CrossRefGoogle Scholar
  32. [32]
    Deng, Y.; Zhang, Q.; Tang, S.; Zhang, L.; Deng, S.; Shi, Z.; Chen, G. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 6828–6830.CrossRefGoogle Scholar
  33. [33]
    Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.CrossRefGoogle Scholar
  34. [34]
    Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.CrossRefGoogle Scholar
  35. [35]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  36. [36]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  37. [37]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  38. [38]
    Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of ChinaHefei, AnhuiChina
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations