Advertisement

Nano Research

, Volume 5, Issue 7, pp 470–476 | Cite as

High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires

  • Sebastian LehmannEmail author
  • Daniel Jacobsson
  • Knut Deppert
  • Kimberly A. Dick
Research Article

Abstract

We have prepared GaAs wurtzite (WZ)-zinc blende (ZB) nanowire heterostructures by Au particle-assisted metal-organic vapor phase epitaxy (MOVPE) growth. Superior crystal quality of both the transition region between WZ and ZB and of the individual segments themselves was found for WZ-ZB single heterostructures. Pure crystal phases were achieved and the ZB segments were found to be free of any stacking defects, whereas the WZ sections showed a maximum stacking fault density of 20 μm−1. The hexagonal cross-sectional wires are terminated by \(\left\{ {10\bar 10} \right\}\)-type side facets for the WZ segment and predominantly {110}-type side facets for the ZB part of the wire. A diameter increase occurred after the transition from WZ to ZB. Additionally, facets of the \(\left\{ {\bar 1\bar 1\bar 1} \right\}\)-type as well as downwards-directed overgrowth of the WZ segments were formed at the WZ to ZB transition to compensate for the observed diameter increase and facet rotation. In the case of WZ-ZB multiple heterostructures, we observed slightly higher densities of stacking faults and twin planes compared to single heterostructures.

Keywords

Nanowires GaAs heterostructure polytypism metal-organic vapor phase epitaxy (MOVPE)-growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vpj, L.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. -Y.; Talin, A. A.; Dhar, N. K. et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002–1032.CrossRefGoogle Scholar
  2. [2]
    Sun, K; Kargar, A.; Park, N.; Madsen, K. N.; Naughton, P. W.; Bright, T.; Jing, Y.; Wang, D. Compound semiconductor nanowire solar cells. IEEE J. Sel. Top. Quant. 2011, 17, 1033–1049.CrossRefGoogle Scholar
  3. [3]
    Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. -E.; Dick, K. A.; Wernersson, L. -E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222–4226.CrossRefGoogle Scholar
  4. [4]
    Tomioka, K.; Fukui, T. Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 2011, 98, 083114.CrossRefGoogle Scholar
  5. [5]
    Björk, M. T.; Schmid, H.; Bessire, C. D.; Moselund, K. E.; Ghoneim, H.; Karg, S.; Lörtscher, E.; Riel, H. Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 2010, 97, 163501.CrossRefGoogle Scholar
  6. [6]
    Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 2011, 11, 2424–2429.CrossRefGoogle Scholar
  7. [7]
    Caroff, P.; Bolinsson, J.; Johansson, J. Crystal phases in III–V nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quant. 2010, 17, 829–846.CrossRefGoogle Scholar
  8. [8]
    Schroer, M. D.; Petta, J. R. Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 2010, 10, 1618–1622.CrossRefGoogle Scholar
  9. [9]
    Dick, K. A.; Bolinsson, J.; Messing, M. E.; Lehmann, S.; Johansson, J.; Caroff, P. Parameter space mapping of InAs nanowire crystal structure. J. Vac. Sci. Technol. B 2011, 29, 04D103.CrossRefGoogle Scholar
  10. [10]
    Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504–508.CrossRefGoogle Scholar
  11. [11]
    Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 2007, 7, 921–926.CrossRefGoogle Scholar
  12. [12]
    Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Fickenscher, M. A.; Perera, S.; Hoang, T. B.; Smith, L. M.; Jackson, H. E. et al. Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 2009, 9, 695–701.CrossRefGoogle Scholar
  13. [13]
    Plante, M. C.; LaPierre, R. R. Control of GaAs nanowire morphology and crystal structure. Nanotechnology 2008, 19, 495603.CrossRefGoogle Scholar
  14. [14]
    Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Heiblum, M. Stacking-faults-free zinc blende GaAs nanowires. Nano Lett. 2009, 9, 215–219.CrossRefGoogle Scholar
  15. [15]
    Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Houben, L.; Heiblum, M.; BukaŁa, M.; Galicka, M.; Buczko, R.; Kacman, P. Method for suppression of stacking faults in wurtzite III–V nanowires. Nano Lett. 2009, 9, 1506–1510.CrossRefGoogle Scholar
  16. [16]
    Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C. Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908–915.CrossRefGoogle Scholar
  17. [17]
    Magnusson, M. H.; Deppert, K.; Malm, J. -O.; Bovin, J. -O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999, 12, 45–48.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Lehmann
    • 1
    Email author
  • Daniel Jacobsson
    • 1
  • Knut Deppert
    • 1
  • Kimberly A. Dick
    • 1
    • 2
  1. 1.Solid State PhysicsLund UniversityLundSweden
  2. 2.Polymer & Materials ChemistryLund UniversityLundSweden

Personalised recommendations