Nano Research

, Volume 5, Issue 7, pp 460–469 | Cite as

Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries

  • Bing Sun
  • Hao Liu
  • Paul Munroe
  • Hyojun Ahn
  • Guoxiu WangEmail author
Research Article


A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.


Mesoporous carbon CMK-3 CoO catalyst Lithium-oxygen battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_231_MOESM1_ESM.pdf (585 kb)
Supplementary material, approximately 584 KB.


  1. [1]
    Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.CrossRefGoogle Scholar
  2. [2]
    Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.CrossRefGoogle Scholar
  3. [3]
    Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.CrossRefGoogle Scholar
  4. [4]
    Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.CrossRefGoogle Scholar
  5. [5]
    Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.CrossRefGoogle Scholar
  6. [6]
    Wang, Y. G.; Zhou, H. S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 2010, 195, 358–361.CrossRefGoogle Scholar
  7. [7]
    Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 2002, 149, A1190–A1195.CrossRefGoogle Scholar
  8. [8]
    Fujinaga, T.; Sakura, S. Polarographic investigation of dissolved-oxygen in non-aqueous solvent. Bull. Chem. Soc. Jpn. 1974, 47, 2781–2786.CrossRefGoogle Scholar
  9. [9]
    Sawyer, D. T.; Chlericato, G.; Angelis, C. T.; Nanni, E. J.; Tsuchiya, T. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 1982, 54, 1720–1724.CrossRefGoogle Scholar
  10. [10]
    Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E. The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J. Electroanal. Chem. 1991, 297, 225–244.CrossRefGoogle Scholar
  11. [11]
    Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C. 2009, 113, 20127–20134.CrossRefGoogle Scholar
  12. [12]
    Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C. 2010, 114, 9178–9186.CrossRefGoogle Scholar
  13. [13]
    Lu, Y. C.; Gasteiger, H. A.; Crumlin, E.; McGuire, R.; Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc. 2010, 157, A1016–A1025.CrossRefGoogle Scholar
  14. [14]
    Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 2011, 50, 6351–6355.CrossRefGoogle Scholar
  15. [15]
    Debart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177–1182.CrossRefGoogle Scholar
  16. [16]
    Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4521–4524.CrossRefGoogle Scholar
  17. [17]
    Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.CrossRefGoogle Scholar
  18. [18]
    Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.CrossRefGoogle Scholar
  19. [19]
    Ren, X. M.; Zhang, S. S.; Tran, D. T.; Read, J. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater Chem. 2011, 21, 10118–10125.CrossRefGoogle Scholar
  20. [20]
    Thapa, A. K.; Ishihara, T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. J. Power Sources 2011, 196, 7016–7020.CrossRefGoogle Scholar
  21. [21]
    Li, J. X.; Wang, N.; Zhao, Y.; Ding, Y. H.; Guan, L. H. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem. Commun. 2011, 13, 698–700.CrossRefGoogle Scholar
  22. [22]
    Li, Y. L.; Wang, J. J.; Li, X. F.; Liu, J.; Geng, D. S.; Yang, J. L.; Li, R. Y.; Sun, X. L. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries. Electrochem. Commun. 2011, 13, 668–672.CrossRefGoogle Scholar
  23. [23]
    Yoo, E.; Zhou, H. S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 2011, 5, 3020–3026.CrossRefGoogle Scholar
  24. [24]
    Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J., et al. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487–A492.CrossRefGoogle Scholar
  25. [25]
    Yang, X. H.; He, P.; Xia, Y. Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127–1130.CrossRefGoogle Scholar
  26. [26]
    Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107–2111.CrossRefGoogle Scholar
  27. [27]
    Wang, G. X.; Liu, H.; Liu, J. A.; Qiao, S. Z.; Lu, G. Q. M.; Munroe, P., et al. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944–4948.CrossRefGoogle Scholar
  28. [28]
    Zhu, S. M.; Zhou, H. A.; Hibino, M.; Honma, I.; Ichihara, M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 2005, 15, 381–386.CrossRefGoogle Scholar
  29. [29]
    Cheng, M. Y.; Hwang, B. J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 2010, 195, 4977–4983.CrossRefGoogle Scholar
  30. [30]
    Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950–2955.CrossRefGoogle Scholar
  31. [31]
    Taguchi, A.; Schuth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.CrossRefGoogle Scholar
  32. [32]
    Su, F. B.; Zeng, J. H.; Bao, X. Y.; Yu, Y. S.; Lee, J. Y.; Zhao, X. S. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 2005, 17, 3960–3967.CrossRefGoogle Scholar
  33. [33]
    Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I. Electro-chemical capacitance of self-ordered mesoporous carbon. J. Power Sources 2003, 122, 219–223.CrossRefGoogle Scholar
  34. [34]
    Wang, Y. G.; Cheng, L.; Li, F.; Xiong, H. M.; Xia, Y. Y. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem. Mater. 2007, 19, 2095–2101.CrossRefGoogle Scholar
  35. [35]
    Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.CrossRefGoogle Scholar
  36. [36]
    Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713.CrossRefGoogle Scholar
  37. [37]
    Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681.CrossRefGoogle Scholar
  38. [38]
    Xiao, J.; Hu, J. Z.; Wang, D. Y.; Hu, D. H.; Xu, W.; Graff, G. L.; Nie, Z. M.; Liu, J.; Zhang, J. G. Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J. Power Sources 2011, 196, 5674–5678.CrossRefGoogle Scholar
  39. [39]
    McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161–1166.CrossRefGoogle Scholar
  40. [40]
    Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Barde, F., et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.CrossRefGoogle Scholar
  41. [41]
    Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609.CrossRefGoogle Scholar
  42. [42]
    Bryantsev, V. S.; Blanco, M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2011, 2, 379–383.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bing Sun
    • 1
  • Hao Liu
    • 1
  • Paul Munroe
    • 2
  • Hyojun Ahn
    • 3
  • Guoxiu Wang
    • 1
    Email author
  1. 1.Centre for Clean Energy Technology, School of Chemistry and Forensic ScienceUniversity of TechnologySydneyAustralia
  2. 2.Electron Microscope UnitThe University of New South WalesSydneyAustralia
  3. 3.School of Materials Science and EngineeringGyeongsang National UniversityJinju, GyeongnamRepublic of Korea

Personalised recommendations