Nano Research

, Volume 5, Issue 7, pp 450–459 | Cite as

Easy access to selective binding and recyclable separation of histidine-tagged proteins using Ni2+-decorated superparamagnetic nanoparticles

  • Zhen Liu
  • Meng Li
  • Zhenhua Li
  • Fang Pu
  • Jinsong RenEmail author
  • Xiaogang Qu
Research Article


The development of simple techniques for the separation and purification of recombinant proteins plays an important role in many of the advancements made in biotechnology and nanotechnology. Herein, we report an easy method for the efficient purification of polyhistidine affinity-tagged (His-tagged) proteins by using Ni2+-decorated superparamagnetic particles. Monodisperse Ni0.3Fe0.7Fe2O4 nanoparticles were prepared via a facile and economical one-pot hydrothermal process. Owing to the characteristic molecular recognition ability between nickel(II) ions and the polyhistidine affinity tag, the nanoparticles could be successfully employed to selectively bind and separate His-tagged cyan fluorescent protein (CFP) from an E. coli cell lysate in a recyclable process. Moreover, by changing the divalent metal precursors, various other metal-decorated magnetic nanoparticles can be obtained. This approach offers the possibility of constructing metal-decorated nanoparticles through a simple method and will be highly beneficial in further applications of nanoparticle-based technologies.


Magnetic nanoparticles green synthesis protein purification recyclable process biotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_230_MOESM1_ESM.pdf (527 kb)
Supplementary material, approximately 527 KB.


  1. [1]
    Yang, H.; Xia, Y. N. Bionanotechnology: Enabling bio-medical research with nanomaterials. Adv. Mater. 2007, 19, 3085–3087.CrossRefGoogle Scholar
  2. [2]
    Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599.CrossRefGoogle Scholar
  3. [3]
    Xu, F.; Wang, Y. J.; Wang, X. D.; Zhang, Y. H.; Tang, Y.; Yang, P. Y. A novel hierarchical nanozeolite composite as sorbent for protein separation in immobilized metal-ion affinity chromatography. Adv. Mater. 2003, 15, 1751–1753.CrossRefGoogle Scholar
  4. [4]
    Nam, J. M.; Han, S. W.; Lee, K. B.; Liu, X. G.; Ratner, M. A.; Mirkin, C. A. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 2004, 43, 1246–1249.CrossRefGoogle Scholar
  5. [5]
    Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519–7525.CrossRefGoogle Scholar
  6. [6]
    Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.CrossRefGoogle Scholar
  7. [7]
    Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.CrossRefGoogle Scholar
  8. [8]
    Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.CrossRefGoogle Scholar
  9. [9]
    Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G.; Dai, H. J. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.CrossRefGoogle Scholar
  10. [10]
    Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248–1260.CrossRefGoogle Scholar
  11. [11]
    Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 2008, 47, 5122–5135.CrossRefGoogle Scholar
  12. [12]
    Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 2006, 128, 10658–10659.CrossRefGoogle Scholar
  13. [13]
    Kim, J.; Piao, Y.; Lee, N.; Park, Y. I.; Lee, I. H.; Lee, J. H.; Paik, S. R.; Hyeon, T. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 2010, 22, 57–60.CrossRefGoogle Scholar
  14. [14]
    Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.CrossRefGoogle Scholar
  15. [15]
    Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393.CrossRefGoogle Scholar
  16. [16]
    Lee, K. B.; Park, S.; Mirkin, C. A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem. Int. Ed. 2004, 43, 3048–3050.CrossRefGoogle Scholar
  17. [17]
    Oh, B. K.; Park, S.; Millstone, J. E.; Lee, S. W.; Lee, K. B.; Mirkin, C. A. Separation of tricomponent protein mixtures with triblock nanorods. J. Am. Chem. Soc. 2006, 128, 11825–11829.CrossRefGoogle Scholar
  18. [18]
    Bao, J.; Chen, W.; Liu, T. T.; Zhu, Y. L.; Jin, P. Y.; Wang, L. Y.; Liu, J. F.; Wei, Y. G.; Li, Y. D. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 2007, 1, 293–298.CrossRefGoogle Scholar
  19. [19]
    Sen, T.; Sebastianelli, A.; Bruce, I. J. Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 2006, 128, 7130–7131.CrossRefGoogle Scholar
  20. [20]
    Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 2012, 134, 1071–1077.CrossRefGoogle Scholar
  21. [21]
    Liu, Z.; Li, M.; Yang, X. J.; Yin, M. L.; Ren, J. S.; Qu, X. G. The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system. Biomaterials 2011, 32, 4683–4690.CrossRefGoogle Scholar
  22. [22]
    Xuan, S. H.; Wang, F.; Gong, X. L.; Kong, S. K.; Yu, J. C.; Leung, K. C. F. Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization. Chem. Commun. 2011, 2514–2516.Google Scholar
  23. [23]
    Lee, K. S.; Lee, I. S. Decoration of superparamagnetic iron oxide nanoparticles with Ni2+: Agent to bind and separate histidine-tagged proteins. Chem. Commun. 2008, 709–711.Google Scholar
  24. [24]
    Liu, Z.; Li, M.; Pu, F.; Ren, J. S.; Yang, X. J.; Qu, X. G. Hierarchical magnetic core-shell nanoarchitectures: Non-linker reagents synthetic route and applications in a biomolecule separation system. J. Mater. Chem. 2012, 22, 2935–2942.CrossRefGoogle Scholar
  25. [25]
    Chun, J.; Seo, S. W.; Jung, G. Y.; Lee, J. Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 2011, 21, 6713–6717.CrossRefGoogle Scholar
  26. [26]
    Cho, E. J.; Jung, S.; Lee, K.; Lee, H. J.; Nam, K. C.; Bae, H. J. Fluorescent receptor-immobilized silica-coated magnetic nanoparticles as a general binding agent for histidine-tagged proteins. Chem. Commun. 2010, 6557–6559.Google Scholar
  27. [27]
    Lee, K. S.; Woo, M. H.; Kim, H. S.; Lee, E. Y.; Lee, I. S. Synthesis of hybrid Fe3O4-silica-NiO superstructures and their application as magnetically separable high-performance biocatalysts. Chem. Commun. 2009, 3780–3782.Google Scholar
  28. [28]
    Fang, W. J.; Chen, X. L.; Zheng, N. F. Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins. J. Mater. Chem. 2010, 20, 8624–8630.CrossRefGoogle Scholar
  29. [29]
    Woo, E.; Ponvel, K. M.; Ahn, I. S.; Lee, C. H. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of his-tagged enzymes. J. Mater. Chem. 2010, 20, 1511–1515.CrossRefGoogle Scholar
  30. [30]
    Chang, W.; Tang, K. B.; Qi, Y. X.; Sheng, J.; Liu, Z. P. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 2010, 20, 1799–1805.CrossRefGoogle Scholar
  31. [31]
    Cheng, W.; Tang, K. B.; Sheng, J. Highly water-soluble superparamagnetic ferrite colloidal spheres with tunable composition and size. Chem. Eur. J. 2010, 16, 3608–3612.CrossRefGoogle Scholar
  32. [32]
    Zhang, Z.; Chen, H. H.; Xing, C. Y.; Guo, M. Y.; Xu, F. G.; Wang, X. D.; Gruber, H.; Zhang, B. L.; Tang, J. L. Sodium citrate: An universal reducing agent for reduction/decoration of graphene oxide with Au nanoparticles. Nano Res. 2011, 4, 599–611.CrossRefGoogle Scholar
  33. [33]
    Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.CrossRefGoogle Scholar
  34. [34]
    Xuan, S. H.; Wang, Y. X. J.; Yu, J. C.; Leung, K. C. F. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 2009, 21, 5079–5087.CrossRefGoogle Scholar
  35. [35]
    Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate group. Angew. Chem. Int. Ed. 2009, 48, 5875–5879.CrossRefGoogle Scholar
  36. [36]
    Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 2007, 46, 4342–4345.CrossRefGoogle Scholar
  37. [37]
    McRae, S. R.; Brown, C. L.; Bushell, G. R. Rapid purification of EGFP, EYFP, and ECFP with high yield and purity. Protein Expres. Purif. 2005, 41, 121–127.CrossRefGoogle Scholar
  38. [38]
    Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant. A. Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. Biochemistry 2009, 48, 10038–10046.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhen Liu
    • 1
    • 2
  • Meng Li
    • 1
    • 2
  • Zhenhua Li
    • 1
    • 2
  • Fang Pu
    • 1
  • Jinsong Ren
    • 1
    Email author
  • Xiaogang Qu
    • 1
  1. 1.State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations