Nano Research

, Volume 5, Issue 7, pp 443–449 | Cite as

Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors

  • Muhong Wu
  • Kaihui Liu
  • Wenlong WangEmail author
  • Yu SuiEmail author
  • Xuedong BaiEmail author
  • Enge Wang
Research Article


Single-walled carbon nanotubes (SWNTs) are expected to be an ideal candidate for making highly efficient strain sensing devices owing to their unique mechanical, electronic, and electromechanical properties. Here we present the use of fluorphlogopite mica (F-mica) as a flexible, high-temperature-bearing and mechanically robust substrate for the direct growth of horizontally aligned ultra-long SWNT arrays by chemical vapor deposition (CVD), which in turn enables the straightforward, facile, and cost-effective fabrication of macro-scale SWNT-array-based strain sensors. Strain sensing tests of the SWNT-array devices demonstrated fairly good strain sensitivity with high ON-state current density.


Single-walled carbon nanotubes (SWNTs) ultralong, aligned arrays fluorphlogopite mica strain sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Park, G.; Rosing, T.; Todd, M. D.; Farrar, C. R.; Hodgkiss, W. Energy harvesting for structural health monitoring sensor networks. ASCE J. Infrastruct. Syst. 2008, 14, 64–79.CrossRefGoogle Scholar
  2. [2]
    Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E. V. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 2004, 15, 379–382.CrossRefGoogle Scholar
  3. [3]
    Li, Z.; Dharap, P.; Nagarajaiah, S.; Barrera, E. V.; Kim, J. D. Carbon nanotube film sensors. Adv. Mater. 2004, 16, 640–643.CrossRefGoogle Scholar
  4. [4]
    Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. -E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. -H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.CrossRefGoogle Scholar
  5. [5]
    Yu, W. J.; Lee, S. Y.; Chae, S. H.; Perello, D.; Han, G. H.; Yun, M.; Lee, Y. H. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 2011, 11, 1344–1350.CrossRefGoogle Scholar
  6. [6]
    Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 1997, 57, R4277–R4280.CrossRefGoogle Scholar
  7. [7]
    Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 1999, 60, 13874–13878.CrossRefGoogle Scholar
  8. [8]
    Yang, L.; Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85, 154–157.CrossRefGoogle Scholar
  9. [9]
    Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.CrossRefGoogle Scholar
  10. [10]
    Grow, R. J.; Wang, Q.; Cao, J.; Wang, D. W.; Dai, H. J. Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 2005, 86, 093104.CrossRefGoogle Scholar
  11. [11]
    Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 2003, 125, 5636–5637.CrossRefGoogle Scholar
  12. [12]
    Hong, B. H.; Lee, J. Y.; Beetz, T.; Zhu, Y.; Kim, P.; Kim, K. S. Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 2005, 127, 15336–15337.CrossRefGoogle Scholar
  13. [13]
    Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.CrossRefGoogle Scholar
  14. [14]
    Reina, A.; Hofmann, M.; Zhu, D.; Kong, J. Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J. Phys. Chem. C 2007, 111, 7292–7297.CrossRefGoogle Scholar
  15. [15]
    Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.CrossRefGoogle Scholar
  16. [16]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.CrossRefGoogle Scholar
  17. [17]
    Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a-and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.CrossRefGoogle Scholar
  18. [18]
    Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.CrossRefGoogle Scholar
  19. [19]
    Louarn, A. L.; Kapche, F.; Bethoux J. M.; Happy, H.; Dambrine, G.; Deryche V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.CrossRefGoogle Scholar
  20. [20]
    Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G. Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 2007, 91, 153111.CrossRefGoogle Scholar
  21. [21]
    Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. -S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.CrossRefGoogle Scholar
  22. [22]
    Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.CrossRefGoogle Scholar
  23. [23]
    Bhaviripudi, S.; Reina, A.; Qi, J.; Kong, J.; Belcher, A. M. Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs. Nanotechnology 2006, 17, 5080–5086.CrossRefGoogle Scholar
  24. [24]
    Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in Synthesis, Properties and Applications; Springer Series in Topics in Apply Physics; Springer-Verlag: Berlin Heidelberg, 2008; Vol. 111.Google Scholar
  25. [25]
    Chriac, H.; Urse, M.; Rusu, F.; Hison, C.; Neagu, M. Ni-Ag thin films as strain-sensitive materials for piezoresistive sensors. Sens. Actuator A-Phys. 1999, 76, 376–380.CrossRefGoogle Scholar
  26. [26]
    Gullapalli, H.; Vemuru, V. S. M.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P. M. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 2010, 6, 1641–1646.CrossRefGoogle Scholar
  27. [27]
    Stampfer, C.; Helbling, T.; Obergfell, D.; Scho1berle, B.; Tripp, M. K.; Jungen, A.; Roth, S.; Bright, V. M.; Hierold, C. Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 2006, 6, 233–237.CrossRefGoogle Scholar
  28. [28]
    Chang, N. K.; Su, C. C.; Chang S. H. Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl. Phys. Lett. 2008, 92, 063501.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Condensed Matter Science and Technology, Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations