Advertisement

Nano Research

, Volume 5, Issue 7, pp 504–511 | Cite as

A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition

  • Mario Hofmann
  • Yong Cheol Shin
  • Ya-Ping Hsieh
  • Mildred S. Dresselhaus
  • Jing KongEmail author
Research Article

Abstract

The metrology of two-dimensional (2D) materials such as graphene, boron nitride or molybdenum disulfide grown by chemical vapor deposition (CVD) is critical for the optimization of their synthesis. We demonstrate the use of film-induced frustrated etching (FIFE) as a facile, scalable method to reveal and quantify structural defects in continuous thin sheets. The sensitivity of the analysis technique to intentionally induced lattice defects in graphene compares favorably to the sensitivity of Raman spectroscopy. A strong correlation between the measured defectiveness and the maximum carrier mobility in graphene emphasizes the importance of the technique for growth optimization. Due to its ease and widespread availability, we anticipate that FIFE will find wide application in the characterization of CVD-synthesized 2D materials.

Keywords

Two-dimensional materials graphene analysis chemical vapor deposition Address 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_227_MOESM1_ESM.pdf (256 kb)
Supplementary material, approximately 255 KB.

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  2. [2]
    Mas-Ballesté, R.; Gomez-Navarró, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.CrossRefGoogle Scholar
  3. [3]
    Chen, J. -H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.CrossRefGoogle Scholar
  4. [4]
    Mohanty, N.; Fahrenholtz, M.; Nagaraja, A.; Boyle, D.; Berry, V. Impermeable graphenic encasement of bacteria. Nano Lett. 2011, 11, 1270–1275.CrossRefGoogle Scholar
  5. [5]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  6. [6]
    Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. -Y.; Dresselhaus, M. S.; Li, L. -J.; Kong, J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.CrossRefGoogle Scholar
  7. [7]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.CrossRefGoogle Scholar
  8. [8]
    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.CrossRefGoogle Scholar
  9. [9]
    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.CrossRefGoogle Scholar
  10. [10]
    Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.CrossRefGoogle Scholar
  11. [11]
    Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.CrossRefGoogle Scholar
  12. [12]
    Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.CrossRefGoogle Scholar
  13. [13]
    Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 2011, 11, 2259–2263.CrossRefGoogle Scholar
  14. [14]
    Radisavljevic, B; Radenovic, A; Brivio, J.; Giacometti, J.; Kis, A. Single-layer MoS transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  15. [15]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  16. [16]
    Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.CrossRefGoogle Scholar
  17. [17]
    Cheng, Z. G.; Zhou, Q. Y.; Wang, C. X.; Wang C.; Li, Q.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767–771.CrossRefGoogle Scholar
  18. [18]
    Barry, I. E.; Eason, R. W.; Cook, G. Light-induced frustration of etching in Fe-doped LiNbO3. Appl. Surf. Sci. 1999, 143, 328–331.CrossRefGoogle Scholar
  19. [19]
    Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.CrossRefGoogle Scholar
  20. [20]
    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.CrossRefGoogle Scholar
  21. [21]
    Wang, H.; Wang, G. Z.; Bao, P. F.; Yang, S. L.; Zhu, W.; Xie, X.; Zhang, W. -J. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 2012, 134, 3627–3630.CrossRefGoogle Scholar
  22. [22]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.CrossRefGoogle Scholar
  23. [23]
    Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.CrossRefGoogle Scholar
  24. [24]
    Tracz, A.; Wegner, G.; Rabe, J. P. Scanning tunneling microscopy study of graphite oxidation in ozone-air mixtures. Langmuir 2003, 19, 6807–6812.CrossRefGoogle Scholar
  25. [25]
    Tao, H. H.; Moser, J.; Alzina, F.; Wang, Q.; Sotomayor-Torres, C. M. The morphology of graphene sheets treated in an ozone generator. J. Phys. Chem. C 2011, 115, 18257–18260.Google Scholar
  26. [26]
    Suk, M. E.; Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590–1594.CrossRefGoogle Scholar
  27. [27]
    Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193.CrossRefGoogle Scholar
  28. [28]
    Boyd, G. T.; Yu, Z. H.; Shen, Y. R. Photoinduced luminescence from the noble-metals and its enhancement on roughened surfaces. Phys. Rev. B 1986, 33, 7923–7936.CrossRefGoogle Scholar
  29. [29]
    Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.CrossRefGoogle Scholar
  30. [30]
    Alzina, F.; Tao, H.; Moser, J.; Garcia, Y.; Bachtold, A.; Sotomayor-Torres, C. M. Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy. Phys Rev B 2010, 82, 075422.CrossRefGoogle Scholar
  31. [31]
    Lin, Y. -C.; Jin, C.; Lee, J. -C.; Jen, S. -F.; Suenaga, K.; Chiu, P. -W. Clean transfer of graphene for isolation and suspension. ACS Nano 2011, 5, 2362–2368.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mario Hofmann
    • 1
  • Yong Cheol Shin
    • 2
  • Ya-Ping Hsieh
    • 3
  • Mildred S. Dresselhaus
    • 4
  • Jing Kong
    • 1
    Email author
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Graduate Institute of Opto-MechatronicsChung-Cheng UniversityChiayiTaiwan
  4. 4.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations