Highly flexible transparent film heaters based on random networks of silver nanowires


We demonstrate a new concept for the fabrication of flexible transparent thin film heaters based on silver nanowires. Thanks to the intrinsic properties of random networks of metallic nanowires, it is possible to combine bendability, transparency and high heating performances at low voltage, typically below 12 V which is of interest for many applications. This is currently not possible with transparent conductive oxide technologies, and it compares well with similar devices fabricated with carbon nanotubes or graphene. We present experiments on glass and poly(ethylene naphthalate) (PEN) substrates (with thicknesses of 125 μm and extremely thin 1.3 μm) with excellent heating performances. We point out that the amount of silver necessary to realize the transparent heaters is very low and we also present preliminary results showing that this material can be efficiently used to fabricate photochromic displays. To our knowledge, this is the first report of metallic nanowire-based transparent thin film heaters. We think these results could be a useful approach for the engineering of highly flexible and transparent heaters which are not attainable by existing processes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Yoon, Y. H.; Song, J. W.; Kim, D.; Kim, J.; Park, J. K.; Oh, S. K.; Han, C. S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287.

  2. [2]

    Kim, D.; Lee, H. -C.; Woo, J. Y.; Han, C. -S. Thermal behavior of transparent film heaters made of single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 5817–5821.

  3. [3]

    Jang, H. -S.; Jeon, S. K.; Nahm, S. H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 2011, 49, 111–116.

  4. [4]

    Wu, Z. P.; Wang, J. N. Preparation of large-area double-walled carbon nanotube films and application as film heater. Physica E 2009, 42, 77–81.

  5. [5]

    Kang, T. J.; Kim, T.; Seo, S. M.; Park, Y. J.; Kim, Y. H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 2011, 49, 1087–1093.

  6. [6]

    Spadafora, E. J.; Saint-Aubin, K.; Celle, C.; Demadrille, R.; Grévin, B.; Simonato, J. -P. Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon, in press, DOI 10.1016/j.carbon.2012.03.010

  7. [7]

    Kang, J.; Kim, H.; Kim, K. S.; Lee, S. -K.; Bae, S.; Ahn, J. -H.; Kim, Y. -J.; Choi, J. -B.; Hong, B. H. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154–5158.

  8. [8]

    Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.

  9. [9]

    Scardaci, V.; Coull, R.; Lyons, P. E.; Rickard, D.; Coleman, J. N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 2011, 7, 2621–2628.

  10. [10]

    De, S.; King, P. J.; Lyons, P. E.; Khan, U.; Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 2010, 4, 7064–7072.

  11. [11]

    Morgenstern, F. S. F.; Kabra, D.; Massip, S.; Brenner, T. J. K.; Lyons, P. E.; Coleman, J. N.; Friend, R. H. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl. Phys. Lett. 2011, 99, 183303.

  12. [12]

    Hu, L.; Kim, H. S.; Lee, J. -Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

  13. [13]

    Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

  14. [14]

    Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453–4457.

  15. [15]

    Yu, Z.; Zhang, Q.; Li, L.; Chen, Q.; Niu, X.; Liu, J.; Pei, Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.

  16. [16]

    Leem, D. -S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; de Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371–4375.

  17. [17]

    Madaria, A. R.; Kumar, A.; Zhou, C. W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.

  18. [18]

    Zeng, X. -Y.; Zhang, Q. -K.; Yu, R. -M.; Lu, C. -Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.

  19. [19]

    Madaria, A.; Kumar, A.; Ishikawa, F.; Zhou, C. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

  20. [20]

    Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J. T.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

  21. [21]

    Krantz, J.; Richter, M.; Spallek, S.; Spiecker, E.; Brabec, C. J. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells. Adv. Funct. Mater. 2011, 21, 4784–4787.

  22. [22]

    Hu, L. B.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.

  23. [23]

    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

  24. [24]

    Lide, D. R. Handbook of Chemistry and Physics 87th Edition. Taylor & Francis CRC Press LLC: Boca Raton, 2006.

  25. [25]

    Zhang, W. C.; Wu, X. L.; Chen, H. T.; Gao, Y. J.; Zhu, J.; Huang, G. S.; Chu, P. K. Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method. Acta Mater. 2008, 56, 2508–2513.

  26. [26]

    Morikawa, J.; Hashimoto, T. Study on thermal diffusivity of poly(ethylene terephthalate) and poly(ethylene naphthalate). Polymer 1997, 38, 5397–5400.

  27. [27]

    Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

  28. [28]

    Allen, M. L.; Aronniemi, M.; Mattila, T.; Alastalo, A.; Ojanperä, K.; Suhonen, M.; Seppä, H. Electrical sintering of nanoparticle structures. Nanotechnology 2008, 19, 175201.

Download references

Author information

Correspondence to Caroline Celle or Jean-Pierre Simonato.

Electronic supplementary material

Supplementary material, approximately 442 KB.

Supplementary material, approximately 4.74 MB

Supplementary material, approximately 4.74 MB

Supplementary material, approximately 4.39 MB

Supplementary material, approximately 4.39 MB

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Celle, C., Mayousse, C., Moreau, E. et al. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 5, 427–433 (2012).

Download citation


  • Thin film heater
  • silver nanowires
  • transparent
  • electrode
  • flexible
  • thermochromic display