Nano Research

, Volume 5, Issue 6, pp 402–411 | Cite as

Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study

Research Article


Graphene growth on the same metal substrate with different crystal morphologies, such as single crystalline and polycrystalline, may involve different mechanisms. We deal with this issue by preparing graphene on single crystal Ni(111) and on ∼300 nm thick Ni films on SiO2 using an ambient pressure chemical vapor deposition (APCVD) method, and analyze the different growth behaviors for different growth parameters by atomically-resolved scanning tunneling microscopy (STM) and complementary macroscopic analysis methods. Interestingly, we obtained monolayer graphene on Ni(111), and multilayer graphene on Ni films under the same growth conditions. Based on the experimental results, it is proposed that the graphene growth on Ni(111) is strongly templated by the Ni(111) lattice due to the strong Ni-C interactions, leading to monolayer graphene growth. Multilayer graphene flakes formed on polycrystalline Ni films are usually stacked with deviations from the Bernal stacking type and show small rotations among the carbon layers. Considering the different substrate features, the inevitable grain boundaries on polycrystalline Ni films are considered to serve as the growth fronts for bilayer and even multilayer graphene.


Graphene scanning tunneling microscopy chemical vapor deposition grain boundary nickel 

Supplementary material

12274_2012_221_MOESM1_ESM.pdf (732 kb)
Supplementary material, approximately 734 KB.


  1. [1]
    Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.CrossRefGoogle Scholar
  2. [2]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  3. [3]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  4. [4]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefGoogle Scholar
  5. [5]
    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.CrossRefGoogle Scholar
  6. [6]
    Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.CrossRefGoogle Scholar
  7. [7]
    Lopez, G. A.; Mittemeijer, E. The solubility of C in solid Cu. Scr. Mater. 2004, 51, 1–5.CrossRefGoogle Scholar
  8. [8]
    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.CrossRefGoogle Scholar
  9. [9]
    Lander, J. J.; Kern, H. E.; Beach, A. L. Solubility and diffusion coefficient of carbon in nickel-Reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 1952, 23, 1305–1309.CrossRefGoogle Scholar
  10. [10]
    Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-Noble metals. Nano Lett. 2011, 11, 297–303.CrossRefGoogle Scholar
  11. [11]
    Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C. A.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.CrossRefGoogle Scholar
  12. [12]
    De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. W.; Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotech. 2009, 8, 135–138.CrossRefGoogle Scholar
  13. [13]
    Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.CrossRefGoogle Scholar
  14. [14]
    Eizenberg, M.; Blakely, J. M. Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228–236.CrossRefGoogle Scholar
  15. [15]
    Backer, R.; Horz, G. Scanning tunneling microscopic investigations of the adsorption and segregation of carbon and sulfur on nickel single crystal surfaces. Anal. Chem. 1995, 353, 757–761.CrossRefGoogle Scholar
  16. [16]
    Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 1997, 374, 61–64.CrossRefGoogle Scholar
  17. [17]
    Gao, M.; Pan, Y.; Zhang, C. D.; Hu, H.; Yang, R.; Lu, H. L.; Cai, J. M.; Du, S. X.; Liu, F.; Gao, H. J. Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 2010, 96, 053109.CrossRefGoogle Scholar
  18. [18]
    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.CrossRefGoogle Scholar
  19. [19]
    Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721.CrossRefGoogle Scholar
  20. [20]
    Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L.; Liu, Z. F. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.CrossRefGoogle Scholar
  21. [21]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefGoogle Scholar
  22. [22]
    Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H., et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.CrossRefGoogle Scholar
  23. [23]
    Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597–605.CrossRefGoogle Scholar
  24. [24]
    Kelly, B. T. The thermal expansion coefficient of graphite parallel to the basal planes. Carbon 1972, 10, 429–433.CrossRefGoogle Scholar
  25. [25]
    Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.CrossRefGoogle Scholar
  26. [26]
    Jiang, J. W.; Wang, J. S.; Li, B. W. Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach. Phys. Rev. B 2009, 80, 205429.CrossRefGoogle Scholar
  27. [27]
    Dedkov, Y. S.; Fonin, M. Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 2010, 12, 125004.CrossRefGoogle Scholar
  28. [28]
    Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. Y. Rotational disorder in few-layer graphene films on 6H-SiC(000-1): A scanning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.CrossRefGoogle Scholar
  29. [29]
    Huang, H.; Wong, S. L.; Tin, C. C.; Luo, Z. Q.; Shen, Z. X.; Chen, W.; Wee, A. T. S. Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 2011, 110, 014308.CrossRefGoogle Scholar
  30. [30]
    Pong, W. T.; Durkan, C. A. Review and outlook for an anomaly of scanning tunneling microscopy (STM): Superlattices on graphite. J. Phys. D: Appl. Phys. 2005, 38, R329–355.Google Scholar
  31. [31]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yanfeng Zhang
    • 1
    • 2
  • Teng Gao
    • 2
  • Shubao Xie
    • 2
  • Boya Dai
    • 2
  • Lei Fu
    • 2
  • Yabo Gao
    • 2
  • Yubin Chen
    • 2
  • Mengxi Liu
    • 2
  • Zhongfan Liu
    • 2
  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations