Nano Research

, Volume 5, Issue 6, pp 388–394 | Cite as

Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes

  • Justin Wu
  • Liming Xie
  • Guosong Hong
  • Hong En Lim
  • Boanerges Thendie
  • Yasumitsu Miyata
  • Hisanori Shinohara
  • Hongjie DaiEmail author
Research Article


Semiconducting single-walled carbon nanotubes (s-SWNTs) with a purity of ∼98% have been obtained by gel filtration of arc-discharge grown SWNTs with diameters in the range 1.2–1.6 nm. Multi-laser Raman spectroscopy confirmed the presence of less than 2% of metallic SWNTs (m-SWNTs) in the s-SWNT enriched sample. Measurement of ∼50 individual tubes in Pd-contacted devices with channel length 200 nm showed on/off ratios of >104, conductances of 1.38–5.8 μS, and mobilities in the range 40–150 cm2·V/s. Short channel multi-tube devices with ∼100 tubes showed lower on/off ratios due to residual m-SWNTs, although the on-current was greatly increased relative to the devices made from individual tubes. Open image in new window


Single-walled carbon nanotubes separation Raman spectroscopy field-effect transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.CrossRefGoogle Scholar
  2. [2]
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.CrossRefGoogle Scholar
  3. [3]
    Zhou, C.; Kong, J.; Dai, H. Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 2000, 76, 1597–1599.CrossRefGoogle Scholar
  4. [4]
    Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.CrossRefGoogle Scholar
  5. [5]
    Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.CrossRefGoogle Scholar
  6. [6]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefGoogle Scholar
  7. [7]
    Dai, H.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. Electrical transport properties and field effect transistors of carbon nanotubes. Nano, 2006, 1, 1–13.CrossRefGoogle Scholar
  8. [8]
    Zhang, L.; Zaric, S.; Tu, X.; Wang, X.; Zhao, W.; Dai, H. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 2008, 130, 2686–2691.CrossRefGoogle Scholar
  9. [9]
    Zhang, L.; Tu, X.; Welsher, K.; Wang, X.; Zheng, M.; Dai, H. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2454–2455.CrossRefGoogle Scholar
  10. [10]
    Park, S.; Lee, H. W.; Wang, H.; Selvarasah, S.; Dokmeci, M. R.; Park, Y. J.; Cha, S. N.; Kim, J. M.; Bao, Z. Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. ACS Nano 2012, 6, 2487–2496.CrossRefGoogle Scholar
  11. [11]
    Ding, L.; Tselev, A.; Wang, J.; Yuan, D.; Chu, H.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.CrossRefGoogle Scholar
  12. [12]
    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.CrossRefGoogle Scholar
  13. [13]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.CrossRefGoogle Scholar
  14. [14]
    Takeshi, T.; Jin, H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.CrossRefGoogle Scholar
  15. [15]
    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.CrossRefGoogle Scholar
  16. [16]
    Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H., Lee, Y. S.; Park, W.; Park, C. Y., Lee, Y. L. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.CrossRefGoogle Scholar
  17. [17]
    Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Li, X.; Tu R.; Bansalruntip, S.; Mann, D.; Zhang, L.; Dai, H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.CrossRefGoogle Scholar
  18. [18]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefGoogle Scholar
  19. [19]
    Gomez, L. M.; Kumar, A.; Zhang, Y.; Ryu, K.; Badmaev, A.; Zhou, C. Scalable light-induced metal to semiconductor conversion of carbon nanotubes. Nano Lett. 2009, 9, 3592–3598.CrossRefGoogle Scholar
  20. [20]
    Kanungo, M.; Lu, H.; Malliaras, G. G.; Blanchet, G. B. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 2009, 323, 234–237.CrossRefGoogle Scholar
  21. [21]
    Moshammer, K.; Hennrich, F.; Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2009, 2, 599–606.CrossRefGoogle Scholar
  22. [22]
    Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270–9276.CrossRefGoogle Scholar
  23. [23]
    Miyata, Y.; Shiozawa, K.; Asada, Y.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 2011, 4, 963–970.CrossRefGoogle Scholar
  24. [24]
    Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.CrossRefGoogle Scholar
  25. [25]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  26. [26]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.CrossRefGoogle Scholar
  27. [27]
    LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.CrossRefGoogle Scholar
  28. [28]
    Ju, S.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat. Nanotechnol. 2008, 3, 356–362.CrossRefGoogle Scholar
  29. [29]
    Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J., et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.CrossRefGoogle Scholar
  30. [30]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  31. [31]
    Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Iijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.CrossRefGoogle Scholar
  32. [32]
    Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  33. [33]
    Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101–173103.CrossRefGoogle Scholar
  34. [34]
    Richter, E.; Subbaswamy, K. R. Theory of size-dependent resonance Raman scattering from carbon nanotubes. Phys. Rev. Lett. 1997, 79, 2738–2741.CrossRefGoogle Scholar
  35. [35]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  36. [36]
    Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121.CrossRefGoogle Scholar
  37. [37]
    Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Justin Wu
    • 1
  • Liming Xie
    • 1
  • Guosong Hong
    • 1
  • Hong En Lim
    • 2
  • Boanerges Thendie
    • 2
  • Yasumitsu Miyata
    • 2
  • Hisanori Shinohara
    • 2
  • Hongjie Dai
    • 1
    Email author
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Chemistry and Institute for Advanced ResearchNagoya UniversityNagoyaJapan

Personalised recommendations