Nano Research

, Volume 5, Issue 5, pp 327–336 | Cite as

Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes

  • Shaohua Shen
  • Coleman X. Kronawitter
  • Jiangang Jiang
  • Samuel S. Mao
  • Liejin Guo
Research Article


Hematite (α-Fe2O3) nanorod films with their surface tuned by W6+ doping have been investigated as oxygen-evolving photoanodes in photoelectrochemical cells. X-ray diffraction, field emission scanning electron microscopy, UV-visible absorption spectroscopy, and photoelectrochemical (PEC) measurements have been performed on the undoped and W6+-doped α-Fe2O3 nanorod films. W6+ doping is found to primarily affect the photoluminescence properties of α-Fe2O3 nanorod films. Comparisons are drawn between undoped and W6+-doped α-Fe2O3 nanorod films, WO3 films, and α-Fe2O3-modified WO3 composite electrodes. A close correlation between dopant concentration, photoluminescence intensity, and anodic photocurrent was observed. It is suggested that W6+ surface doping promotes charge transfer in α-Fe2O3 nanorods, giving rise to the enhanced PEC performance. These results suggest surface tuning via ion doping should represent a viable strategy to further improve the efficiency of α-Fe2O3 photoanodes.


Surface tuning hematite nanorods photoanodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.CrossRefGoogle Scholar
  2. [2]
    Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 2008, 18, 2298–2303.CrossRefGoogle Scholar
  3. [3]
    Kronawitter, C. X.; Vayssieres, L.; Shen, S. H.; Guo, L. J.; Wheeler, D. A.; Zhang, J. Z.; Antoun, B. R.; Mao, S. S. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ. Environ. Sci. 2011, 4, 3889–3899.CrossRefGoogle Scholar
  4. [4]
    Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.CrossRefGoogle Scholar
  5. [5]
    Park, H. G.; Holt, J. K. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energ. Environ. Sci. 2010, 3, 1028–1036.CrossRefGoogle Scholar
  6. [6]
    van de Krol, R.; Liang, Y. Q.; Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18, 2311–2320.CrossRefGoogle Scholar
  7. [7]
    Kronawitter, C. X.; Mao, S. S.; Antoun, B. R. Doped, porous iron oxide films and their optical functions and anodic photo-currents for solar water splitting. Appl. Phys. Lett. 2011, 98, 092108.CrossRefGoogle Scholar
  8. [8]
    Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721.CrossRefGoogle Scholar
  9. [9]
    Ingler, W. B.; Baltrus, J. P.; Khan, S. U. M. Photoresponse of p-type zinc-doped iron(III) oxide thin films. J. Am. Chem. Soc. 2004, 126, 10238–10239.CrossRefGoogle Scholar
  10. [10]
    Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900–15907.CrossRefGoogle Scholar
  11. [11]
    Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488.CrossRefGoogle Scholar
  12. [12]
    Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.CrossRefGoogle Scholar
  13. [13]
    Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energ. 2011, 36, 2777–2784.CrossRefGoogle Scholar
  14. [14]
    Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E. W. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 2008, 20, 3803–3805.CrossRefGoogle Scholar
  15. [15]
    Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Investigation of ceramic Fe2O3〈Ta〉 photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energ. 2002, 27, 33–38.CrossRefGoogle Scholar
  16. [16]
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  17. [17]
    Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.CrossRefGoogle Scholar
  18. [18]
    Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P. Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J. Mater. Chem. 2011, 21, 10792–10800.CrossRefGoogle Scholar
  19. [19]
    Morrish, R.; Rahman, M.; MacElroy, J. M. D.; Wolden, C. A. Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 2011, 4, 474–479.CrossRefGoogle Scholar
  20. [20]
    Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 2009, 113, 6327–6359.CrossRefGoogle Scholar
  21. [21]
    Feng, X. J.; LaTempa, T. J.; Basham, J. I.; Mor, G. K.; Varghese, O. K.; Grimes, C. A. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 2010, 10, 948–952.CrossRefGoogle Scholar
  22. [22]
    Spurgeon, J. M.; Boettcher, S. W.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible, polymer-supported, Si wire array photoelectrodes. Adv. Mater. 2010, 22, 3277–3281.CrossRefGoogle Scholar
  23. [23]
    Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.CrossRefGoogle Scholar
  24. [24]
    Zhang, Z. H.; Hossain, M. F.; Takahashi, T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal. B: Environ. 2010, 95, 423–429.CrossRefGoogle Scholar
  25. [25]
    Mao, A.; Shin, K.; Kim, J. K.; Wang, D. H.; Han, G. Y.; Park, J. H. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: Nanorods versus nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 1852–1858.CrossRefGoogle Scholar
  26. [26]
    Lindgren, T.; Wang, H. L.; Beermann, N.; Vayssieres, L.; Hagfeldt, A.; Lindquist, S. E. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energ. Mater. Sol. C. 2002, 71, 231–243.CrossRefGoogle Scholar
  27. [27]
    Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 2001, 13, 233–235.CrossRefGoogle Scholar
  28. [28]
    de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.CrossRefGoogle Scholar
  29. [29]
    Sartoretti, C. J.; Ulmann, M.; Alexander, B. D.; Augustynski, J.; Weidenkaff, A. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Chem. Phys. Lett. 2003, 376, 194–200.CrossRefGoogle Scholar
  30. [30]
    Zoppi, A.; Lofrumento, C.; Castellucci, E. M.; Migliorini, M. G. The Raman spectrum of hematite: Possible indicator for a compositional or firing distinction among Terra Sigiliata wares. Ann. Chim. 2005, 95, 239–246.CrossRefGoogle Scholar
  31. [31]
    Tarassov, M.; Mihailova, B.; Tarassova, E.; Konstantinov, L. Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria. Eur. J. Mineral. 2002, 14, 977–986.CrossRefGoogle Scholar
  32. [32]
    Khan, S. U. M.; Akikusa, J. Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 1999, 103, 7184–7189.CrossRefGoogle Scholar
  33. [33]
    Souza, F. L.; Lopes, K. P.; Nascente, P. A. P.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energ. Mater. Sol. C. 2009, 93, 362–368.CrossRefGoogle Scholar
  34. [34]
    Björkstén, U.; Moser, J.; Grätzel, M. Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 1994, 6, 858–863.CrossRefGoogle Scholar
  35. [35]
    Zou, B. S.; Volkov, V. Surface modification on time-resolved fluorescences of Fe2O3 nanocrystals. J. Phys. Chem. Solids 2000, 61, 757–764.CrossRefGoogle Scholar
  36. [36]
    Fei, H.; Ai, X.; Gao, M.; Yang, Y.; Zhang, T.; Shen, J. Luminescence of coated α-Fe2O3 nanoparticles. J. Lumin. 1996, 66–67, 345–348.Google Scholar
  37. [37]
    Zou, B. S.; Huang, W.; Han, M. Y.; Li, S. F. Y.; Wu, X. C.; Zhang, Y.; Zhang, J. S.; Wu, P. F.; Wang, R.Y. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. J. Phys. Chem. Solids 1997, 58, 1315–1320.CrossRefGoogle Scholar
  38. [38]
    He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71, 125411.CrossRefGoogle Scholar
  39. [39]
    Zhang, Y.; Liu, W. J.; Wu, C. F.; Gong, T.; Wei, J. Q.; Ma, M. X.; Wang, K. L.; Zhong, M. L.; Wu, D. H. Photoluminescence of Fe2O3 nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes. Mater. Res. Bull. 2008, 43, 3490–3494.CrossRefGoogle Scholar
  40. [40]
    Hahn, N. T.; Mullins, C. B. Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 2010, 22, 6474–6482.CrossRefGoogle Scholar
  41. [41]
    Vayssieres, L. On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnology 2004, 1, 1–41.Google Scholar
  42. [42]
    Spray, R. L.; McDonald, K. J.; Choi, K. S. Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 2011, 115, 3497–3506.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityShaanxiChina
  2. 2.Department of Mechanical Engineering, University of California at Berkeley, Environmental Energy Technologies DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations