Nano Research

, Volume 5, Issue 5, pp 307–319 | Cite as

Effect of carbon nanotube network morphology on thin film transistor performance

  • Marina Y. TimmermansEmail author
  • David Estrada
  • Albert G. NasibulinEmail author
  • Joshua D. Wood
  • Ashkan Behnam
  • Dong-ming Sun
  • Yutaka Ohno
  • Joseph W. Lyding
  • Abdou Hassanien
  • Eric Pop
  • Esko I. KauppinenEmail author
Research Article


The properties of electronic devices based on carbon nanotube networks (CNTNs) depend on the carbon nanotube (CNT) deposition method used, which can yield a range of network morphologies. Here, we synthesize single-walled CNTs using an aerosol (floating catalyst) chemical vapor deposition process and deposit CNTs at room temperature onto substrates as random networks with various morphologies. We use four CNT deposition techniques: electrostatic or thermal precipitation, and filtration through a filter followed by press transfer or dissolving the filter. We study the mobility using pulsed measurements to avoid hysteresis, the on/off ratio, and the electrical noise properties of the CNTNs, and correlate them to the network morphology through careful imaging. Among the four deposition methods thermal precipitation is found to be a novel approach to prepare high-performance, partially aligned CNTNs that are dry-deposited directly after their synthesis. Our results provide new insight into the role of the network morphologies and offer paths towards tunable transport properties in CNT thin film transistors.


Carbon nanotube network thin film transistor morphology mobility image processing hysteresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_211_MOESM1_ESM.pdf (1001 kb)
Supplementary material, approximately 0.97 MB.


  1. [1]
    Snow, E.; Novak, J.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  2. [2]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  3. [3]
    Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.CrossRefGoogle Scholar
  4. [4]
    Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758.CrossRefGoogle Scholar
  5. [5]
    Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan P. M. Organized assembly of carbon nanotubes. Nature 2002, 416, 495–496.CrossRefGoogle Scholar
  6. [6]
    Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.CrossRefGoogle Scholar
  7. [7]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.CrossRefGoogle Scholar
  8. [8]
    Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  9. [9]
    Ha, M.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.CrossRefGoogle Scholar
  10. [10]
    Lee, S. Y.; Lee, S. W.; Kim, S. M.; Yu, W. J.; Jo, Y. W.; Lee, Y. H. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. ACS Nano 2011, 5, 2369–2375.CrossRefGoogle Scholar
  11. [11]
    Miyata, Y.; Shiozawa, K.; Asada, Y.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 2011, 4, 963–970.CrossRefGoogle Scholar
  12. [12]
    Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471–8487.CrossRefGoogle Scholar
  13. [13]
    Zavodchikova, M. Y.; Kulmala, T.; Nasibulin, A. G.; Ermolov, V.; Franssila, S.; Grigoras, K.; Kauppinen, E. I. Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology 2009, 20, 085201.CrossRefGoogle Scholar
  14. [14]
    Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A., et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.CrossRefGoogle Scholar
  15. [15]
    Nasibulin, A. G.; Kaskela, A.; Mustonen, K.; Anisimov, A. S.; Ruiz, V.; Kivistö, S.; Rackauskas, S.; Timmermans, M. Y.; Pudas, M.; Aitchison, B., et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214–3221.CrossRefGoogle Scholar
  16. [16]
    Rouhi, N.; Jain, D.; Zand, K.; Burke, P. J. Fundamental limits on the mobility of nanotube based semiconducting inks. Adv. Mater. 2010, 23, 94–99.CrossRefGoogle Scholar
  17. [17]
    Sangwan, V. K.; Behnam, A.; Ballarotto, V. W.; Fuhrer, M. S.; Ural, A.; Williams, E. D. Optimizing transistor performance of percolating carbon nanotube networks. Appl. Phys. Lett. 2010, 97, 043111.CrossRefGoogle Scholar
  18. [18]
    LeMieux, M. C.; Sok, S.; Roberts, M. E.; Opatkiewicz, J. P.; Liu, D.; Barman, S. N.; Patil, N.; Mitra, S.; Bao, Z. Solution assembly of organized carbon nanotube networks for thinfilm transistors. ACS Nano 2009, 3, 4089–4097.CrossRefGoogle Scholar
  19. [19]
    Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S.; Alam, M. A.; Rogers, J. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.CrossRefGoogle Scholar
  20. [20]
    Pimparkar, N.; Kocabas, C.; Kang, S. J.; Rogers, J.; Alam, M. A. Limits of performance gain of aligned CNT over randomized network: theoretical predictions and experimental validation. IEEE Electr. Device Lett. 2007, 28, 593–595.CrossRefGoogle Scholar
  21. [21]
    Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.CrossRefGoogle Scholar
  22. [22]
    Zavodchikova, M. Y.; Nasibulin, A. G.; Kulmala, T.; Grigoras, K.; Anisimov, A. S.; Franssila, S.; Ermolov, V.; Kauppinen, E. I. Novel carbon nanotube network deposition technique for electronic device fabrication. Phys. Status Solidi B 2008, 245, 2272–2275.CrossRefGoogle Scholar
  23. [23]
    Gonzalez, D.; Nasibulin, A. G.; Baklanov, A. M.; Shandakov, S. D.; Brown, D. P.; Queipo, P.; Kauppinen, E. I. A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci. Technol. 2005, 39, 1064–1071.CrossRefGoogle Scholar
  24. [24]
    Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; Wiley-Interscience: New York, 1982.Google Scholar
  25. [25]
    Bao, Z. Materials and fabrication needs for low-cost organic transistor circuits. Adv. Mater. 2000, 12, 227–230.CrossRefGoogle Scholar
  26. [26]
    Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.CrossRefGoogle Scholar
  27. [27]
    Estrada, D.; Dutta, S.; Liao, A.; Pop, E. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 2010, 21, 085702.CrossRefGoogle Scholar
  28. [28]
    Liu, Z.; Qiu, Z. J.; Zhang, Z. B.; Zheng, L. R.; Zhang, S. L. Mobility extraction for nanotube TFTs. IEEE Electr. Device Lett. 2011, 32, 913–915.CrossRefGoogle Scholar
  29. [29]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.CrossRefGoogle Scholar
  30. [30]
    Wang, C.; Chien, J. -C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.CrossRefGoogle Scholar
  31. [31]
    Hooge, F. N. 1/f noise is no surface effect. Phys. Lett. A 1969, 29, 139–140.CrossRefGoogle Scholar
  32. [32]
    Snow, E. S.; Novak, J. P.; Lay, M. D.; Perkins, F. K. 1/f noise in single-walled carbon nanotube devices. Appl. Phys. Lett. 2004, 85, 4172–4174.CrossRefGoogle Scholar
  33. [33]
    Soliveres, S.; Gyani, J.; Delseny, C.; Hoffmann, A.; Pascal, F. 1/f noise and percolation in carbon nanotube random networks. Appl. Phys. Lett. 2007, 90, 082107.CrossRefGoogle Scholar
  34. [34]
    Stadermann, M.; Papadakis, S. J.; Palvo, M. R.; Novak, J.; Snow, E.; Fu, Q.; Liu, J.; Fridman, Y.; Boland, J. J.; Superfine, R., et al. Nanoscale study of conduction through carbon nanotube networks. Phys. Rev. B 2004, 69, 201402(R).CrossRefGoogle Scholar
  35. [35]
    Kodama, Y.; Sato, R.; Inami, N.; Shikoh, E.; Yamamoto, Y.; Hori, H.; Kataura, H.; Fujiwara, A. Field-effect modulation of contact resistance between carbon nanotubes. Appl. Phys. Lett. 2007, 91, 133515.CrossRefGoogle Scholar
  36. [36]
    Blackburn, J. L.; M. Barnes, T. M.; Beard, M. C.; Kim, Y. H.; Tenent, R. C.; McDonald, T. J.; To, B.; Coutts, T. J.; Heben, M. J. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2008, 2, 1266–1274.CrossRefGoogle Scholar
  37. [37]
    Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.CrossRefGoogle Scholar
  38. [38]
    Lee, E. J. H.; Balasubramanian, K.; Burghard, M.; Kern, K. Spatially resolved potential distribution in carbon nanotube cross junction devices. Adv. Mater. 2009, 21, 2720–2724.CrossRefGoogle Scholar
  39. [39]
    Hecht, D.; Hu, L.; Grüner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 2006, 89, 133112.CrossRefGoogle Scholar
  40. [40]
    Anisimov, A. S.; Nasibulin, A. G.; Jiang, H.; Launois, P.; Cambedouzou, J.; Shandakov, S. D.; Kauppinen, E. I. Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon 2010, 48, 380–388.CrossRefGoogle Scholar
  41. [41]
    Necas, D.; Klapetek, P.; Anderson, C. Gwyddion 2.20; Brno: Czech Republic, 2009.Google Scholar
  42. [42]
    MATLAB, 7.8.0347 (R2009a), MathWorks, Inc.: Natick, MA, 2009.Google Scholar
  43. [43]
    Estrada, D.; Pop, E. Imaging dissipation and hot spots in carbon nanotube network transistors. Appl. Phys. Lett. 2011, 98, 073102.CrossRefGoogle Scholar
  44. [44]
    Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.CrossRefGoogle Scholar
  45. [45]
    Fuhrer, M. S.; Nygård, J.; Shih, L.; Forero, M.; Yoon, Y. -G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A., et al. Crossed nanotube junctions. Science 2000, 288, 494–497.CrossRefGoogle Scholar
  46. [46]
    Han, T.; Reneker, D. H.; Yarin, A. L. Buckling of jets in electrospinning. Polymer 2007, 48, 6064–6076.CrossRefGoogle Scholar
  47. [47]
    Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425.CrossRefGoogle Scholar
  48. [48]
    Perebeinos, V.; Rotkin, S. V.; Petrov, A. G.; Avouris, P. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Nano Lett. 2008, 9, 312–316.CrossRefGoogle Scholar
  49. [49]
    Ding, J. W.; Yan, X. H.; Cao, J. X.; Wang, D. L.; Tang, Y.; Yang, Q. B. Curvature and strain effects on electronic properties of single-wall carbon nanotubes. J. Phys.: Condens. Matter 2003, 15, L439.CrossRefGoogle Scholar
  50. [50]
    Yoon, Y.; Guo, J. Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Trans. Electron Dev. 2007, 54, 1280–1287.CrossRefGoogle Scholar
  51. [51]
    Wahab, M. A.; Khosru, Q. D. M. Strain effects on the performance of zero-Schottky-barrier double-walled carbon nanotube transistors. J. Appl. Phys. 2010, 108, 034301.CrossRefGoogle Scholar
  52. [52]
    Li, Q.; Zhu, Y. T.; Kinloch, I. A.; Windle, A. H. Selforganization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B 2006, 110, 13926–13930.CrossRefGoogle Scholar
  53. [53]
    Zeng, H.; Kristiansen, K.; Wang, P.; Bergli, J.; Israelachvili, J. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions. Langmuir 2011, 27, 7163–7167.Google Scholar
  54. [54]
    Gonzalez, R. C.; Woods, R. E.; Eddins, S. L. Digital Image Processing using MATLAB; Pearson Education: India, 2004.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marina Y. Timmermans
    • 1
    Email author
  • David Estrada
    • 2
  • Albert G. Nasibulin
    • 1
    Email author
  • Joshua D. Wood
    • 2
    • 3
  • Ashkan Behnam
    • 2
  • Dong-ming Sun
    • 4
  • Yutaka Ohno
    • 4
  • Joseph W. Lyding
    • 2
    • 3
  • Abdou Hassanien
    • 5
    • 6
  • Eric Pop
    • 2
    • 3
  • Esko I. Kauppinen
    • 1
    Email author
  1. 1.NanoMaterials Group, Department of Applied Physics & Center for New MaterialsAalto UniversityEspooFinland
  2. 2.Department of Electrical & Computer Eng., Micro & Nanotechnology LabUniversity of IllinoisUrbanaUSA
  3. 3.Beckman InstituteUniversity of IllinoisUrbanaUSA
  4. 4.Department of Quantum EngineeringNagoya UniversityNagoyaJapan
  5. 5.National Institute of ChemistryLjubljanaSlovenia
  6. 6.Electronics and Photonics Research InstituteAISTIbaraki kenJapan

Personalised recommendations