Nano Research

, Volume 5, Issue 4, pp 292–296 | Cite as

Densely aligned graphene nanoribbons at ∼35 nm pitch

Research Article


We demonstrate the fabrication of high-density aligned graphene nanoribbon (GNR) arrays by plasma etching of graphene sheets through a nanomask derived from self-assembled poly (styrene-block-dimethylsiloxane) (PS-PDMS) diblock copolymer films. This approach produces parallel GNR (∼12 nm wide) arrays at ∼35 nm pitch. Microscopy and polarized Raman spectroscopy are used to reveal the high-degree of alignment of GNRs. Electrical measurements show that parallel GNRs in a 1 μm wide region can deliver ∼0.38 mA current at a source-drain bias of 1 V. This novel patterning approach allows for the fabrication of densely aligned GNR arrays on various substrates and could provide a route to large scale integration of GNRs into nanoelectronics, optoelectronics and biosensors.


Graphene nanoribbons aligned array diblock copolymer plasma etching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_209_MOESM1_ESM.pdf (236 kb)
Supplementary material, approximately 235 KB.


  1. [1]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  2. [2]
    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.CrossRefGoogle Scholar
  3. [3]
    Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361–394.CrossRefGoogle Scholar
  4. [4]
    Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.CrossRefGoogle Scholar
  5. [5]
    Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefGoogle Scholar
  6. [6]
    Ouyang, Y. J.; Dai, H. J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15.CrossRefGoogle Scholar
  7. [7]
    Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J.; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.CrossRefGoogle Scholar
  8. [8]
    Wang, X. R.; Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem. 2010, 2, 661–665.CrossRefGoogle Scholar
  9. [9]
    Jiao, L. Y.; Zhang, L.; Ding, L.; Liu, J. E.; Dai, H. J. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res. 2010, 3, 387–394.CrossRefGoogle Scholar
  10. [10]
    Bai, J. W.; Duan, X. F.; Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009, 9, 2083–2087.CrossRefGoogle Scholar
  11. [11]
    Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 2010, 132, 14751–14753.CrossRefGoogle Scholar
  12. [12]
    Wu, Z. S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H. M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 2010, 3, 16–22.CrossRefGoogle Scholar
  13. [13]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.CrossRefGoogle Scholar
  14. [14]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.CrossRefGoogle Scholar
  15. [15]
    Jiao, L. Y.; Wang, X. R.; Diankov, G.; Wang, H. L.; Dai, H. J. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325CrossRefGoogle Scholar
  16. [16]
    Cano-Marquez, A. G.; Rodriguez-Macias, F. J.; Campos-Delgado, J.; Espinosa-Gonzalez, C. G.; Tristan-Lopez, F.; Ramirez-Gonzalez, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantu, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533.CrossRefGoogle Scholar
  17. [17]
    Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.CrossRefGoogle Scholar
  18. [18]
    Stoykovich, M. P.; Nealey, P. F. Block copolymers and conventional lithography. Mater. Today 2006, 9, 20–29.CrossRefGoogle Scholar
  19. [19]
    Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.CrossRefGoogle Scholar
  20. [20]
    Liang, X. G.; Jung, Y. S.; Wu, S. W.; Ismach, A.; Olynick, D. L.; Cabrini, S.; Bokor, J. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 2010, 10, 2454–2460.CrossRefGoogle Scholar
  21. [21]
    Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010, 10, 1125–1131.CrossRefGoogle Scholar
  22. [22]
    Jung, Y. S.; Ross, C. A. Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. Nano Lett. 2007, 7, 2046–2050.CrossRefGoogle Scholar
  23. [23]
    Jung, Y. S.; Chang, J. B.; Verploegen, E.; Berggren, K. K.; Ross, C. A. A path to ultranarrow patterns using self-assembled lithography. Nano Lett. 2010, 10, 1000–1005.CrossRefGoogle Scholar
  24. [24]
    Xie, L. M.; Wang, H. L.; Jin, C. H.; Wang, X. R.; Jiao, L. Y.; Suenaga, K.; Dai, H. J. Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 2011, 133, 10394–10397.CrossRefGoogle Scholar
  25. [25]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefGoogle Scholar
  26. [26]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.CrossRefGoogle Scholar
  27. [27]
    Ci, L.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  28. [28]
    Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.CrossRefGoogle Scholar
  29. [29]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations