Advertisement

Nano Research

, Volume 5, Issue 3, pp 190–198 | Cite as

Vertical oxide nanotubes connected by subsurface microchannels

  • Henrik PerssonEmail author
  • Jason P. Beech
  • Lars Samuelson
  • Stina Oredsson
  • Christelle N. Prinz
  • Jonas O. TegenfeldtEmail author
Research Article

Abstract

We describe the fabrication of arrays of oxide nanotubes using a combination of bottom up and top down nanofabrication. The nanotubes are made from epitaxially grown semiconductor nanowires that are covered with an oxide layer using atomic layer deposition. The tips of the oxide-covered nanowires are removed by argon sputtering and the exposed semiconductor core is then selectively etched, leaving a hollow oxide tube. We show that it is possible to create fluidic connections to the nanotubes by a combination of electron beam lithography to precisely define the nanotube positions and controlled wet under-etching. DNA transport is demonstrated in the microchannel. Cells were successfully cultured on the nanotube arrays, demonstrating compatibility with cell-biological applications. Our device opens up the possibility of injecting molecules into cells with both spatial and temporal control. Open image in new window

Keywords

Nanotube cell injection nanowire gallium phosphide reactive ion etching wet etching cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_199_MOESM1_ESM.pdf (173 kb)
Supplementary material, approximately 172 KB.

Supplementary material, approximately 4.46 MB

References

  1. [1]
    Prinz, C.; Hallstrom, W.; Martensson, T.; Samuelson, L.; Montelius, L.; Kanje, M. Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 2008, 19, 345101.CrossRefGoogle Scholar
  2. [2]
    Hallstrom, W.; Prinz, C. N.; Suyatin, D.; Samuelson, L.; Montelius, L.; Kanje, M. Rectifying and sorting of regenerating axons by free-standing nanowire patterns: A highway for nerve fibers. Langmuir 2009, 25, 4343–4346.CrossRefGoogle Scholar
  3. [3]
    Hallstrom, W.; Lexholm, M.; Suyatin, D. B.; Hammarin, G.; Hessman, D.; Samuelson, L.; Montelius, L.; Kanje, M.; Prinz, C. N. Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 2010, 10, 782–787.CrossRefGoogle Scholar
  4. [4]
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  5. [5]
    Dimaki, M.; Vazquez, P.; Olsen, M. H.; Sasso, L.; Rodriguez-Trujillo, R.; Vedarethinam, I.; Svendsen, W. E. Fabrication and characterization of 3d micro- and nanoelectrodes for neuron recordings. Sensors 2010, 10, 10339–10355.CrossRefGoogle Scholar
  6. [6]
    Linsmeier, C. E.; Prinz, C. N.; Pettersson, L. M. E.; Caroff, P.; Samuelson, L.; Schouenborg, J.; Montelius, L.; Danielsen, N. Nanowire biocompatibility in the brain-Looking for a needle in a 3d stack. Nano Lett. 2009, 9, 4184–4190.CrossRefGoogle Scholar
  7. [7]
    Hallstrom, W.; Martensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 2007, 7, 2960–2965.CrossRefGoogle Scholar
  8. [8]
    Berthing, T.; Bonde, S.; Sorensen, C. B.; Utko, P.; Nygard, J.; Martinez, K. L. Intact mammalian cell function on semiconductor nanowire arrays: New perspectives for cell-based biosensing. Small 2011, 7, 640–647.CrossRefGoogle Scholar
  9. [9]
    Park, S.; Kim, Y. -S.; Kim, W. B.; Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett. 2009, 9, 1325–1329.CrossRefGoogle Scholar
  10. [10]
    McKnight, T. E.; Melechko, A. V.; Griffin, G. D.; Guillorn, M. A.; Merkulov, V. I.; Serna, F.; Hensley, D. K.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003, 14, 551–556.CrossRefGoogle Scholar
  11. [11]
    Shalek, A. K.; Robinsson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D. -R.; Yoon, M. -H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S., et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. P. Natl. Acad. Sci. USA 2010, 107, 1870–1875.CrossRefGoogle Scholar
  12. [12]
    Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.CrossRefGoogle Scholar
  13. [13]
    Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Voros, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H., et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507.CrossRefGoogle Scholar
  14. [14]
    Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes P. Natl. Acad. Sci. USA 2007, 104, 8218–8222.CrossRefGoogle Scholar
  15. [15]
    Singhal, R.; Orynbayeva, Z.; Sundaram, R. V. K.; Niu, J. J.; Bhattacharyya, S.; Vitol, E. A.; Schrlau, M. G.; Papazoglou, E. S.; Friedman, G.; Gogotsi, Y. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 2011, 6, 57–64.CrossRefGoogle Scholar
  16. [16]
    Vakarelski, I. U.; Brown, S. C.; Higashitani, K.; Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 2007, 23, 10893–10896.CrossRefGoogle Scholar
  17. [17]
    Kobayashi, N.; Rivas-Carillo, J. D.; Soto-Gutierrez, A.; Fukazawa, T.; Chen, Y.; Navarro-Alvarez, N.; Tanaka, N. Gene delivery to embryonic stem cells. Birth Defects Res. C 2005, 75, 10–18.CrossRefGoogle Scholar
  18. [18]
    Karra, D.; Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 2010, 30, 6171–6177.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y.; Yu, L. C. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008, 19, 506–510.CrossRefGoogle Scholar
  20. [20]
    Zhang, Y.; Yu, L. C. Single-cell microinjection technology in cell biology. BioEssays 2008, 30, 606–610.CrossRefGoogle Scholar
  21. [21]
    McAllister, D. V.; Allen, M. G.; Prausnitz, M. R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2000, 2, 289–313.CrossRefGoogle Scholar
  22. [22]
    Adamo, A.; Jensen, K. F. Microfluidic based single cell microinjection. Lab Chip 2008, 8, 1258–1261.CrossRefGoogle Scholar
  23. [23]
    Matsuoka, H.; Komazaki, T.; Mukai, Y.; Shibusawa, M.; Akane, H.; Chaki, A.; Uetake, N.; Saito, M. High throughput easy microinjection with a single-cell manipulation supporting robot. J. Biotechnol. 2005, 116, 185–194.CrossRefGoogle Scholar
  24. [24]
    Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.CrossRefGoogle Scholar
  25. [25]
    Lee, S.; An, R.; Hunt, A. J. Liquid glass electrodes for nanofluidics. Nat. Nanotechnol. 2010, 5, 412–416.CrossRefGoogle Scholar
  26. [26]
    Kim, B. M.; Murray, T.; Bau, H. H. The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 2005, 16, 1317–1320.CrossRefGoogle Scholar
  27. [27]
    Han, S. W.; Nakamura, C.; Kotobuki, N.; Obataya, I.; Ohgushi, H.; Nagamune, T.; Miyake, J. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomed. Nanotechnol. 2008, 4, 215–225.CrossRefGoogle Scholar
  28. [28]
    Kouklin, N. A.; Kim, W. E.; Lazareck, A. D.; Xu, J. M. Carbon nanotube probes for single-cell experimentation and assays. Appl. Phys. Lett. 2005, 87, 173901.CrossRefGoogle Scholar
  29. [29]
    Skold, N.; Hallstrom, W.; Persson, H.; Montelius, L.; Kanje, M.; Samuelson, L.; Prinz, C. N.; Tegenfeldt, J. O. Nanofluidics in hollow nanowires. Nanotechnology. 2010, 21, 155301.CrossRefGoogle Scholar
  30. [30]
    Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.CrossRefGoogle Scholar
  31. [31]
    Suyatin, D. B.; Hallstrom, W.; Samuelson, L.; Montelius, L.; Prinz, C. N.; Kanje, M. Gallium phosphide nanowire arrays and their possible application in cellular force investigations. J. Vac. Sci. Technol. B 2009, 27, 3092–3094.CrossRefGoogle Scholar
  32. [32]
    Chang, K. L.; Lee, C. K.; Hsu, J. W.; Hsieh, H. F.; H.C., S. The etching behavior of n-gap in aqua regia solutions. J. Appl. Electrochem. 2005, 35, 77–84.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Henrik Persson
    • 1
    Email author
  • Jason P. Beech
    • 1
  • Lars Samuelson
    • 1
  • Stina Oredsson
    • 2
  • Christelle N. Prinz
    • 1
    • 3
  • Jonas O. Tegenfeldt
    • 1
    • 4
    Email author
  1. 1.Solid State Physics/The Nanometer Structure ConsortiumLund UniversityLundSweden
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.Neuronano Research CenterLund UniversityLundSweden
  4. 4.Department of PhysicsUniversity of GothenburgGothenburgSweden

Personalised recommendations