Nano Research

, Volume 5, Issue 2, pp 124–134 | Cite as

Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages

  • Elizaveta Panfilova
  • Alexander Shirokov
  • Boris Khlebtsov
  • Larisa Matora
  • Nikolai Khlebtsov
Research Article


We report the first application of Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages in a multiplexed dot immunoassay. The assay principle is based on the staining of analyte drops on a nitrocellulose membrane strip by using multicolor nanoparticles conjugated with biospecific probing molecules. Nanoparticles were prepared by a galvanic replacement reaction between the Ag atoms of silver nanocubes and Au ions of tetrachloroauric acid. Depending on the Ag/Au conversion ratio, the particle plasmon resonance was tuned from 450 to 700 nm and the suspension color changed from yellow to blue. The particles of yellow, red, and blue suspensions were functionalized with chicken, rat, and mouse immuno gamma globulin (IgG) molecular probes, respectively. The multiplex capability of the assay was illustrated by a proof-of-concept experiment involving simultaneous one-step determination of target molecules (rabbit anti-chicken, anti-rat, and anti-mouse antibodies) with a mixture of fabricated conjugates. Under naked eye examination, no cross-colored spots or nonspecific bioconjugate adsorption were observed, and the low detection limit was about 20 fmol. Open image in new window


Silver nanocubes Au/Ag nanocages plasmon resonance functionalized plasmonic nanoparticles dot immunoassay multiplexed biosensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.CrossRefGoogle Scholar
  2. [2]
    Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 2008, 37, 2028–2045.CrossRefGoogle Scholar
  3. [3]
    Boisselier, E.; Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.CrossRefGoogle Scholar
  4. [4]
    Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294.Google Scholar
  5. [5]
    Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.CrossRefGoogle Scholar
  6. [6]
    Khlebtsov, N. G.; Dykman, L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35.CrossRefGoogle Scholar
  7. [7]
    Nguyen, D. T.; Kim, D. J.; Kim, K. S. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 2011, 42, 207–227.CrossRefGoogle Scholar
  8. [8]
    Zeng, S.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506.CrossRefGoogle Scholar
  9. [9]
    Hutter, E.; Maysinger, D. Gold nanoparticles and quantum dots for bioimaging. Microsc. Res. Tech. 2011, 74, 592–604.CrossRefGoogle Scholar
  10. [10]
    Coto-García, A. M.; Sotelo-González, E.; Fernández-Argüelles, M. T.; Pereiro, R.; Costa-Fernández, J. M.; Sanz-Medel, A. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal. Bioanal. Chem. 2011, 399, 29–42.CrossRefGoogle Scholar
  11. [11]
    Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.CrossRefGoogle Scholar
  12. [12]
    Goldman, E. R.; Medintz, I. L.; Mattoussi, H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem. 2006, 384, 560–563.CrossRefGoogle Scholar
  13. [13]
    Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.CrossRefGoogle Scholar
  14. [14]
    Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41–46.CrossRefGoogle Scholar
  15. [15]
    Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefGoogle Scholar
  16. [16]
    Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O’Regan, R. M.; Yezhelyev, M. V.; Simons, J. W.; Wang, M. D.; Nie, S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2007, 2, 1152–1165.CrossRefGoogle Scholar
  17. [17]
    Wang, H. Q.; Wang, J. H.; Li, Y. Q.; Li, X. Q.; Liu, T. C.; Huang, Z. L.; Zhao, Y. D. Multi-color encoding of poly-styrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay. J. Colloid Interface Sci. 2007, 316, 622–627.CrossRefGoogle Scholar
  18. [18]
    Summers, C. J.; Menkara, H. M.; Gilstrap, R. A., Jr.; Menkara, M.; Morris, T. Nanocrystalline phosphors for lighting and detection applications. Mater. Sci. Forum, 2010, 654–656, 1130–1133.CrossRefGoogle Scholar
  19. [19]
    Wang, Z.; Wang, X.; Jiang, H.; Ding, J.; Wang, J.; Shi, W. Probing near-infrared quantum dots for imaging and biomedical applications. Adv. Mater. Res. 2012, 345, 3–11.CrossRefGoogle Scholar
  20. [20]
    Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F. Marchal, F.; Dubertre, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4, 2531–2538.CrossRefGoogle Scholar
  21. [21]
    Khlebtsov, N. G.; Dykman, L. A. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.CrossRefGoogle Scholar
  22. [22]
    Hu, R.; Yong, K. T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J. Phys. Chem. C 2009, 113, 2676–2684.CrossRefGoogle Scholar
  23. [23]
    Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000, 97, 996–1001.CrossRefGoogle Scholar
  24. [24]
    Khlebtsov, B.; Khlebtsov, N. Ultrasharp light-scattering resonances of structured nanospheres: Effects of size-dependent dielectric functions. J. Biomed. Opt. 2006, 11, 044002.CrossRefGoogle Scholar
  25. [25]
    Nehl, C. L.; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419.CrossRefGoogle Scholar
  26. [26]
    Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.CrossRefGoogle Scholar
  27. [27]
    Sun, Y.; Mayers, B. T.; Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481–485.CrossRefGoogle Scholar
  28. [28]
    Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704–12710.CrossRefGoogle Scholar
  29. [29]
    Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.CrossRefGoogle Scholar
  30. [30]
    Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.CrossRefGoogle Scholar
  31. [31]
    Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Bibikova, O.; Terentyuk, G.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V.; Khlebtsov, N. G. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5, 7077–7089.CrossRefGoogle Scholar
  32. [32]
    Yegorenkova, I. V.; Tregubova, K. V.; Matora, L. Y.; Burygin, G. L.; Ignatov, V. V. Use of ELISA with antiexopolysaccharide antibodies to evaluate wheat-root colonization by the rhizobacterium Paenibacillus polymyxa. Curr. Microbiol. 2010, 61, 376–380.CrossRefGoogle Scholar
  33. [33]
    Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.CrossRefGoogle Scholar
  34. [34]
    Khlebtsov, B. N.; Khanadeev, V. A.; Maksimova, I. L.; Terentyuk, G. S.; Khlebtsov, N. G. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol Russia 2010, 5, 454–468.CrossRefGoogle Scholar
  35. [35]
    Khanadeev, V. A.; Khlebtsov, B. N.; Staroverov, S. A.; Vidyasheva, I. V.; Skaptsov, A. A.; Ileneva, E. S.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G. Quantitative cell bioimaging using gold-nanoshell conjugates and phage antibodies. J. Biophotonics 2011, 4, 74–83.CrossRefGoogle Scholar
  36. [36]
    Dykman, L. A.; Bogatyrev V. A. Gold nanoparticles: Preparation, functionalisation, and applications in biochemistry and immunochemistry. Russ. Chem. Rev. 2007, 76, 181–194.CrossRefGoogle Scholar
  37. [37]
    Jürgens, L.; Nichtl, A.; Werner, U. Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy. Cytometry 1999, 37, 87–92.CrossRefGoogle Scholar
  38. [38]
    Khlebtsov, N. G.; Bogatyrev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Englebienne, P. A multilayer model for gold nanoparticle bioconjugates: Application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J. 2003, 65, 622–635.CrossRefGoogle Scholar
  39. [39]
    Khlebtsov, B.; Khlebtsov, N. Enhanced solid-phase immunoassay using gold nanoshells: Effect of nanoparticle optical properties. Nanotechnology 2008, 19, 435703.CrossRefGoogle Scholar
  40. [40]
    Chen, C.; Wang, L.; Yu, H.; Wang, J.; Zhou, J.; Tan, Q.; Deng, L. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology 2007, 18, 115612.CrossRefGoogle Scholar
  41. [41]
    Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.CrossRefGoogle Scholar
  42. [42]
    Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. -P.; Chen, J.; Xia, Y. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl. Mater. Interf. 2009, 1, 2044–2048.CrossRefGoogle Scholar
  43. [43]
    Lu, X.; Tuan, H. Y.; Chen, J.; Li, Z. Y.; Korgel, B. A.; Xia, Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 2007, 129, 1733–1742.CrossRefGoogle Scholar
  44. [44]
    Liao, H.; Hafner, J. H. Gold nanorod bioconjugates. Chem. Mater. 2005, 17, 4636–4641.CrossRefGoogle Scholar
  45. [45]
    Xie, Z. X.; Charlier, J.; Cousty J. Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: Formation of hydrogen bond-stabilized hexamers. Surf. Sci. 2000, 448, 201–211.CrossRefGoogle Scholar
  46. [46]
    Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.CrossRefGoogle Scholar
  47. [47]
    Urusov, A. E.; Zherdev, A. V.; Dzantiev B. B. Immunochemical methods of mycotoxin analysis (review). Appl. Biochem. Microbiol. 2010, 46, 253–266.CrossRefGoogle Scholar
  48. [48]
    Yeh, C. H.; Hung, C. Y.; Chang, T. C.; Lin, H. P.; Lin, Y. C. An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluid. Nanofluid. 2009, 6, 85–91.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elizaveta Panfilova
    • 1
  • Alexander Shirokov
    • 1
  • Boris Khlebtsov
    • 1
    • 2
  • Larisa Matora
    • 1
    • 2
  • Nikolai Khlebtsov
    • 1
    • 2
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussian Federation
  2. 2.Saratov State UniversitySaratovRussian Federation

Personalised recommendations