Nano Research

, Volume 5, Issue 2, pp 109–116

Functionalization of silicon nanowire surfaces with metal-organic frameworks

  • Nian Liu
  • Yan Yao
  • Judy J. Cha
  • Matthew T. McDowell
  • Yu Han
  • Yi Cui
Research Article

Abstract

Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. Open image in new window

Keywords

Silicon nanowire metal-organic framework step-by-step surface modification nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_190_MOESM1_ESM.pdf (1017 kb)
Supplementary material, approximately 0.99 MB.

References

  1. [1]
    Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.CrossRefGoogle Scholar
  2. [2]
    Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.CrossRefGoogle Scholar
  3. [3]
    Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.CrossRefGoogle Scholar
  4. [4]
    Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.CrossRefGoogle Scholar
  5. [5]
    Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.CrossRefGoogle Scholar
  6. [6]
    Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.CrossRefGoogle Scholar
  7. [7]
    Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999.CrossRefGoogle Scholar
  8. [8]
    Murray, L. J.; Dinca, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.CrossRefGoogle Scholar
  9. [9]
    Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 2006, 45, 1390–1393.CrossRefGoogle Scholar
  10. [10]
    Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.CrossRefGoogle Scholar
  11. [11]
    Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.CrossRefGoogle Scholar
  12. [12]
    Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046.CrossRefGoogle Scholar
  13. [13]
    Lu, G.; Hupp, J. T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132, 7832–7833.CrossRefGoogle Scholar
  14. [14]
    Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.CrossRefGoogle Scholar
  15. [15]
    Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.CrossRefGoogle Scholar
  16. [16]
    Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M.; Matzger, A. J. A Route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.CrossRefGoogle Scholar
  17. [17]
    Jahan, M.; Bao, Q. L.; Yang, J. X.; Loh, K. P. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 2010, 132, 14487–14495.CrossRefGoogle Scholar
  18. [18]
    Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.CrossRefGoogle Scholar
  19. [19]
    Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  20. [20]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.CrossRefGoogle Scholar
  21. [21]
    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  22. [22]
    Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.CrossRefGoogle Scholar
  23. [23]
    Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.CrossRefGoogle Scholar
  24. [24]
    Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.CrossRefGoogle Scholar
  25. [25]
    Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Woll, C. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 15118–15119.CrossRefGoogle Scholar
  26. [26]
    Shekhah, O.; Wang, H.; Zacher, D.; Fischer, R. A.; Woll, C. Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route. Angew. Chem. Int. Ed. 2009, 48, 5038–5041.CrossRefGoogle Scholar
  27. [27]
    B’etard, A. l.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev., in press, DOI: 10.1021/cr200167v.Google Scholar
  28. [28]
    Biemmi, E.; Darga, A.; Stock, N.; Bein, T. Direct growth of Cu3(btc)2(H2O)3·xH2O thin films on modified QCM-gold electrodes-water sorption isotherms. Micropor. Mesopor. Mat. 2008, 114, 380–386.CrossRefGoogle Scholar
  29. [29]
    Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, K. S.; Van Duyne, R. P.; Hupp, J. T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 2011, 23, 4449–4452.CrossRefGoogle Scholar
  30. [30]
    Arslan, H. K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R. A.; Wöll, C. High-throughput fabrication of uniform and homogenous MOF coatings. Adv. Funct. Mater. 2011, 21, 4228–4231.CrossRefGoogle Scholar
  31. [31]
    Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci USA 2008, 105, 11623–11627.CrossRefGoogle Scholar
  32. [32]
    Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.CrossRefGoogle Scholar
  33. [33]
    Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.CrossRefGoogle Scholar
  34. [34]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefGoogle Scholar
  35. [35]
    Dick, K. A.; Deppert, K.; Karlsson, L. S.; Wallenberg, L. R.; Samuelson, L.; Seifert, W. A new understanding of Au-assisted growth of III–V semiconductor nanowires. Adv. Funct. Mater. 2005, 15, 1603–1610.CrossRefGoogle Scholar
  36. [36]
    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.CrossRefGoogle Scholar
  37. [37]
    Wang, Y. W.; Schmidt, V.; Senz, S.; Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.CrossRefGoogle Scholar
  38. [38]
    Karimi, B.; Zamani, A.; Abedia, S.; Clark, J. H. Aerobic oxidation of alcohols using various types of immobilized palladium catalyst: The synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chem. 2009, 11, 109–119.CrossRefGoogle Scholar
  39. [39]
    Zacher, D.; Schmid, R.; Woll, C.; Fischer, R. A. Surface chemistry of metal-organic frameworks at the liquid-solid interface. Angew. Chem. Int. Ed. 2011, 50, 176–199.CrossRefGoogle Scholar
  40. [40]
    Hermes, S.; Zacher, D.; Baunemann, A.; Woll, C.; Fischer, R. A. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 2007, 19, 2168–2173.CrossRefGoogle Scholar
  41. [41]
    Centrone, A.; Yang, Y.; Speakman, S.; Bromberg, L.; Rutledge, G. C.; Hatton, T. A. Growth of metal-organic frameworks on polymer surfaces. J. Am. Chem. Soc. 2010, 132, 15687–15691.CrossRefGoogle Scholar
  42. [42]
    Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.CrossRefGoogle Scholar
  43. [43]
    Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008, 453, 207–211.CrossRefGoogle Scholar
  44. [44]
    Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.CrossRefGoogle Scholar
  45. [45]
    Zacher, D.; Liu, J. N.; Huber, K.; Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 2009, 1031–1033.Google Scholar
  46. [46]
    Millange, F.; Medina, M. I.; Guillou, N.; Ferey, G.; Golden, K. M.; Walton, R. I. Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. Angew. Chem. Int. Ed. 2010, 49, 763–766.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nian Liu
    • 1
  • Yan Yao
    • 2
  • Judy J. Cha
    • 2
  • Matthew T. McDowell
    • 2
  • Yu Han
    • 3
  • Yi Cui
    • 2
    • 4
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  3. 3.Advanced Membrane and Porous Materials CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  4. 4.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations