Nano Research

, Volume 5, Issue 1, pp 43–48 | Cite as

Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2

  • Emilio Scalise
  • Michel Houssa
  • Geoffrey Pourtois
  • Valery Afanas’ev
  • André Stesmans
Research Article

Abstract

The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS2) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS2, the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS2. Open image in new window

Keywords

MoS2 quasi-2D chalcogenide materials first-principles modeling strain-induced semiconductor to metal transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Geim, A. K; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H. Graphene: Materially better carbon. MRS Bull. 2010, 35, 289–295.CrossRefGoogle Scholar
  3. [3]
    Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.CrossRefGoogle Scholar
  4. [4]
    Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossRefGoogle Scholar
  5. [5]
    Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.CrossRefGoogle Scholar
  6. [6]
    Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.CrossRefGoogle Scholar
  7. [7]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  8. [8]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  9. [9]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  10. [10]
    Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  11. [11]
    Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J. S.; Baik, J.; Shin, H. J., et al. Band-gap transition induced by interlayer van der waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.CrossRefGoogle Scholar
  12. [12]
    Lebegue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.CrossRefGoogle Scholar
  13. [13]
    Li, T.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.CrossRefGoogle Scholar
  14. [14]
    Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 2011, 115, 3934–3941.CrossRefGoogle Scholar
  15. [15]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  16. [16]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  17. [17]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Cond. Matt. 2009, 21, 395502.CrossRefGoogle Scholar
  18. [18]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  19. [19]
    Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comp. Chem. 2009, 30, 934–939.CrossRefGoogle Scholar
  20. [20]
    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.CrossRefGoogle Scholar
  21. [21]
    Kam, K. K.; Parkinson, B. Detailed photocurrent spectros-copy of the semiconducting group VIB transition metal dichalcogenides. J. Chem. Phys. 1982, 86, 463–467.CrossRefGoogle Scholar
  22. [22]
    Young, P. A. Lattice parameter measurements on molybdenum disulphide. Brit. J. Appl. Phys. (J. Phys. D) 1968, 1, 936–938.Google Scholar
  23. [23]
    Boker, T.; Severin, R.; Muller, A.; Janovitz, C.; Manzke, R.; Voss, D.; Kruger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.CrossRefGoogle Scholar
  24. [24]
    Li, W.; Chen, J. F.; He, Q.; Wang, T. Electronic and elastic properties of MoS2. Physica B 2010, 405, 2498–2502.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emilio Scalise
    • 1
  • Michel Houssa
    • 1
  • Geoffrey Pourtois
    • 2
    • 3
  • Valery Afanas’ev
    • 1
  • André Stesmans
    • 1
  1. 1.Semiconductor Physics Laboratory, Department of Physics and AstronomyUniversity of LeuvenLeuvenBelgium
  2. 2.Department of ChemistryUniversity of AntwerpWilrijk-AntwerpBelgium
  3. 3.Interuniversity Microelectronics CentreLeuvenBelgium

Personalised recommendations