Nano Research

, Volume 4, Issue 12, pp 1215–1222 | Cite as

Fabrication of silver nanowire transparent electrodes at room temperature

  • Takehiro Tokuno
  • Masaya NogiEmail author
  • Makoto Karakawa
  • Jinting Jiu
  • Thi Thi Nge
  • Yoshio Aso
  • Katsuaki Suganuma
Research Article


Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heat-treatment at about 200 °C which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 °C. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens. Open image in new window


Silver nanowire transparent electrode room temperature flexibility organic solar cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fraser, D. B.; Cook, H. D. Highly conductive, transparent films of sputtered In2−xSnxO3−y. J. Electrochem. Soc. 1972, 119, 1368–1374.CrossRefGoogle Scholar
  2. [2]
    Lewis, B. G.; Paine, D. C. Applications and processing of transparent conducting oxides. MRS Bull. 2000, 25, 22–27.CrossRefGoogle Scholar
  3. [3]
    Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44.CrossRefGoogle Scholar
  4. [4]
    Kuznetsov, V. L.; Edwards, P. P. Functional materials for sustainable energy technologies: Four case studies. ChemSusChem 2010, 3, 44–58.CrossRefGoogle Scholar
  5. [5]
    MacDiarmid, A. G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.CrossRefGoogle Scholar
  6. [6]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  7. [7]
    Kumar, S.; Zhou, C. The race to replace tin-doped indium oxide: Which materials will win? ACS Nano 2010, 4, 11–14.CrossRefGoogle Scholar
  8. [8]
    Yamaguchi, H.; Eda, G.; Mattevi, C.; Kim, H.; Chhowalla, M. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano 2010, 4, 524–528.CrossRefGoogle Scholar
  9. [9]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., et al. Rollto- roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  10. [10]
    Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y.; Sun, Y.; Li, Q.; Fan, S.; Jiang, K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.CrossRefGoogle Scholar
  11. [11]
    Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotube, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  12. [12]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  13. [13]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  14. [14]
    Azulai, D.; Belenkova, T.; Gilon, H.; Barkay, Z.; Markovich, G. Transparent metal nanowire thin films prepared in mesostructured templates. Nano Lett. 2009, 9, 4246–4249.CrossRefGoogle Scholar
  15. [15]
    Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  16. [16]
    Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.CrossRefGoogle Scholar
  17. [17]
    Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.CrossRefGoogle Scholar
  18. [18]
    Gaynor, W.; Lee, J. Y.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2010, 4, 30–34.CrossRefGoogle Scholar
  19. [19]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.CrossRefGoogle Scholar
  20. [20]
    Lu, Y. C.; Chou, K. S. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology 2010, 21, 215707.CrossRefGoogle Scholar
  21. [21]
    Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.CrossRefGoogle Scholar
  22. [22]
    Madaria, A. R.; Kumar, A.; Zhou, C. W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.CrossRefGoogle Scholar
  23. [23]
    Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.CrossRefGoogle Scholar
  24. [24]
    Hardin, B. H.; Gaynor, W.; Ding, I. K.; Rim, S. B.; Peumans, P.; McGehee, M. D. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells. Org. Electron. 2011, 12, 875–879.CrossRefGoogle Scholar
  25. [25]
    Zhu, Y.; Hill, C. M.; Pan, S. Reductive-oxidation electrogenerated chemiluminescence (ECL) generation at a transparent silver nanowire electrode. Langmuir 2011, 27, 3121–3127.CrossRefGoogle Scholar
  26. [26]
    Jiu, J. T.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 2009, 114, 333–338.CrossRefGoogle Scholar
  27. [27]
    Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.CrossRefGoogle Scholar
  28. [28]
    Wang, H. S.; Qiao, X. L; Chen, J. G.; Wang, X. J.; Ding, S. Y. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453.CrossRefGoogle Scholar
  29. [29]
    Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N. Shapecontrolled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.CrossRefGoogle Scholar
  30. [30]
    Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.CrossRefGoogle Scholar
  31. [31]
    Wakuda, D.; Hatamura, M.; Suganuma, K. Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem. Phys. Lett. 2007, 441, 305–308.CrossRefGoogle Scholar
  32. [32]
    Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater. 2009, 21, 1595–1598.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Takehiro Tokuno
    • 1
  • Masaya Nogi
    • 1
    Email author
  • Makoto Karakawa
    • 1
  • Jinting Jiu
    • 1
  • Thi Thi Nge
    • 1
  • Yoshio Aso
    • 1
  • Katsuaki Suganuma
    • 1
  1. 1.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityIbaraki, OsakaJapan

Personalised recommendations