Nano Research

, Volume 4, Issue 10, pp 1005–1012 | Cite as

High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors

  • Ruo-Gu Huang
  • Douglas Tham
  • Dunwei Wang
  • James R. Heath
Research Article

Abstract

We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (∼108), low drain-induced barrier lowering (∼30 mV) and low subthreshold swing (∼80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (∼148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. Open image in new window

Keywords

Silicon nanowire (SiNW) field-effect transistor (FET) surface treatment inverter ring oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_157_MOESM1_ESM.pdf (480 kb)
Supplementary material, approximately 479 KB.

References

  1. [1]
    Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nano-sensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  2. [2]
    McAlpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.CrossRefGoogle Scholar
  3. [3]
    Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. -K.; Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.CrossRefGoogle Scholar
  4. [4]
    Yu, J. -K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 2010, 5, 718–721.CrossRefGoogle Scholar
  5. [5]
    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.CrossRefGoogle Scholar
  6. [6]
    Singh, N.; Buddharaju, K. D.; Manhas, S. K.; Agarwal, A.; Rustagi, S. C.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. L. Si, SiGe nanowire devices by top-down technology and their applications. IEEE T. Electron. Dev. 2008, 55, 3107–3118.CrossRefGoogle Scholar
  7. [7]
    Hsu, H. -H.; Liu, T. -W.; Chan, L.; Lin, C. D.; Huang, T. -Y.; Lin, H. -C. Fabrication and characterization of multiplegated poly-Si nanowire thin-film transistors and impacts of multiple-gate structures on device fluctuations. IEEE T. Electron. Dev. 2008, 55, 3063–3069.CrossRefGoogle Scholar
  8. [8]
    Yan, R. H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE T. Electron. Dev. 1992, 39, 1704–1710.CrossRefGoogle Scholar
  9. [9]
    Suzuki, K.; Tanaka, T.; Tosaka, Y.; Horie, H.; Arimoto, Y. Scaling theory for double-gate SOI MOSFET’s. IEEE T. Electron. Dev. 1993, 40, 2326–2329.CrossRefGoogle Scholar
  10. [10]
    Auth, C. P.; Plummer, J. D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electr. Device Lett. 1997, 18, 74–76.CrossRefGoogle Scholar
  11. [11]
    Yu, B.; Wang, L.; Yuan, Y.; Asbeck, P. M.; Taur, Y. Scaling of nanowire transistors. IEEE T. Electron. Dev. 2008, 55, 2846–2858.CrossRefGoogle Scholar
  12. [12]
    Wang, D.; Sheriff, B. A.; Heath, J. R. Complementary symmetry silicon nanowire logic: Power-efficient inverters with gain. Small 2006, 2, 1153–1158.CrossRefGoogle Scholar
  13. [13]
    Asenov, A.; Brown, A. R.; Davies, J. H.; Kaya, S.; Slavcheva, G. Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE T. Electron. Dev. 2003, 50, 1837–1852.CrossRefGoogle Scholar
  14. [14]
    Collaert, N.; Dixit, A.; Goodwin, M.; Anil, K. G.; Rooyackers, R.; Degroote, B.; Leunissen, L. H. A.; Veloso, A.; Jonckheere, R.; De Meyer, K.; Jurczak, M.; Biesemans, S. A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node. IEEE Electr. Device Lett. 2004, 25, 568–570.CrossRefGoogle Scholar
  15. [15]
    Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. High-speed integrated nanowire circuits. Nature 2005, 434, 1085.CrossRefGoogle Scholar
  16. [16]
    Nam, S.; Jiang, X.; Xiong, Q.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. PNAS 2009, 106, 21035–21038.CrossRefGoogle Scholar
  17. [17]
    Chen, Z.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J.; Wind, S. J.; Solomon, P. M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.CrossRefGoogle Scholar
  18. [18]
    Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.CrossRefGoogle Scholar
  19. [19]
    Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.CrossRefGoogle Scholar
  20. [20]
    Heath, J. R. Superlattice nanowire pattern transfer (SNAP). Acc. Chem. Res. 2008, 41, 1609–1617.CrossRefGoogle Scholar
  21. [21]
    Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; Delonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H. -R.; Stoddart, J. F.; Heath, J. R. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 2007, 445, 414–417.CrossRefGoogle Scholar
  22. [22]
    Wang, D.; Bunimovich, Y.; Boukai, A.; Heath J. R. Two-dimensional single-crystal nanowire arrays. Small 2007, 3, 2043–2047.CrossRefGoogle Scholar
  23. [23]
    Wolf, S. MOS devices and NMOS process integration. In Silicon Processing for the VLSI Era Volume 2 — Process Integration; Lattice Press: California, 1990; p. 317.Google Scholar
  24. [24]
    Seo, K.; Sharma, S.; Yasseri, A. A.; Stewart, D. R.; Kamins, T. I. Surface charge density of unpassivated and passivate metal-catalyzed silicon nanowires. Electrochem. Solid State Lett. 2006, 9, G69–G72.CrossRefGoogle Scholar
  25. [25]
    Tham, D.; Heath, J. R. Ultradense, deep subwavelength nanowire array photovoltaics as engineered optical thin films. Nano Lett. 2010, 10, 4429–4434.CrossRefGoogle Scholar
  26. [26]
    Schroder, D. K. Mobility. In Semiconductor Material and Device Characterization; John Wiley & Sons: New York, 1998; pp. 540–548.Google Scholar
  27. [27]
    Rudenko, T.; Collaert, N.; De Gendt, S.; Kilchytska, V.; Jurczak, M.; Flandre, D. Effective mobility in FinFET structures with HfO2 and SiON gate dielectrics and TaN gate electrode. Microelectron. Eng. 2005, 80, 386–389.CrossRefGoogle Scholar
  28. [28]
    van Dal, M. J. H.; Collaert, N.; Doornbos, G.; Vellianitis, G.; Curatola, G.; Pawlak, B. J.; Duffy, R.; Jonville, C.; Degroote, B.; Altamirano E., et al. Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography. In 2007 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, 2007, pp. 110–111.Google Scholar
  29. [29]
    Zheng, G.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.CrossRefGoogle Scholar
  30. [30]
    Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.CrossRefGoogle Scholar
  31. [31]
    Sun, S. C.; Plummer, J. D. Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE J. Solid-State Circ. 1980, 15, 562–573.CrossRefGoogle Scholar
  32. [32]
    Sze, S. M. MOSFET. In Physics of Semiconductor Devices; 2nd ed.; Wiley: New York, 1981; p. 447.Google Scholar
  33. [33]
    Triyoso, D; Liu, R.; Roan, D; Ramon, M.; Edwards, N. V.; Gregory, R.; Werho, D.; Kulik, J.; Tam, G.; Irwin, E., et al. Impact of deposition and annealing temperature on material and electrical characteristics of ALD HfO2. J. Electrochem. Soc. 2004, 151, F220–227.CrossRefGoogle Scholar
  34. [34]
    Conley, J. F.; Ono, Y.; Tweet, D. J.; Zhuang, W.; Solanki, R. Atomic layer deposition of thin hafnium oxide films using a carbon free precursor. J. Appl. Phys. 2003, 93, 712–718.CrossRefGoogle Scholar
  35. [35]
    Onishi, K.; Kang, C. S.; Choi, R.; Cho, H. -J.; Gopalan, S.; Nieh, R. E.; Krishnan, S. A.; Lee, J. C. Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing. IEEE T. Electron. Dev. 2003, 50, 384–390.CrossRefGoogle Scholar
  36. [36]
    Richter, C. A.; Xiong, H. D.; Zhu, X.; Wang, W.; Stanford, V. M.; Hong, W. -K.; Lee, T.; Ioannou, D. E.; Li, Q. Metrology for the electrical characterization of semiconductor nanowires. IEEE T. Electron. Dev. 2008, 55, 3086–3095.CrossRefGoogle Scholar
  37. [37]
    Rustagi, S. C.; Singh, N.; Fang, W. W.; Buddharaju, K. D.; Omampuliyur, S. R.; Teo, S. H. G.; Tung, C. H.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. L. CMOS inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electr. Device Lett. 2007, 28, 1021–1024.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ruo-Gu Huang
    • 1
  • Douglas Tham
    • 2
  • Dunwei Wang
    • 3
  • James R. Heath
    • 2
  1. 1.Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of ChemistryBoston CollegeChestnut HillUSA

Personalised recommendations