Nano Research

, 4:996 | Cite as

The origin of wrinkles on transferred graphene

  • Nan Liu
  • Zhonghuai Pan
  • Lei Fu
  • Chaohua Zhang
  • Boya Dai
  • Zhongfan Liu
Research Article


When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology-induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1–3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either erased or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process. Open image in new window


Graphene wrinkle transfer surface topography atomic force microscopy 

Supplementary material

12274_2011_156_MOESM1_ESM.pdf (1004 kb)
Supplementary material, approximately 0.98 MB.


  1. [1]
    Landau, L.; Lifshits, E.; Pitaevskii, L. Statistical Physics, Part I; Pergamon: Oxford, 1980.Google Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  3. [3]
    Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  4. [4]
    Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.CrossRefGoogle Scholar
  5. [5]
    Katsnelson, M.; Geim, A. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 2008, 366, 195–204.CrossRefGoogle Scholar
  6. [6]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.CrossRefGoogle Scholar
  7. [7]
    Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.CrossRefGoogle Scholar
  8. [8]
    Elias, D.; Nair, R.; Mohiuddin, T.; Morozov, S.; Blake, P.; Halsall, M.; Ferrari, A.; Boukhvalov, D.; Katsnelson, M.; Geim, A. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.CrossRefGoogle Scholar
  9. [9]
    Kim, K.; Zhao, Y.; Jang, H.; Lee, S.; Kim, J.; Ahn, J.; Kim, P.; Choi, J.; Hong, B. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  10. [10]
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  11. [11]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  12. [12]
    Geim, A. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  13. [13]
    Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.CrossRefGoogle Scholar
  14. [14]
    Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 2008, 77, 075422.CrossRefGoogle Scholar
  15. [15]
    Obraztsov, A.; Obraztsova, E.; Tyurnina, A.; Zolotukhin, A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.CrossRefGoogle Scholar
  16. [16]
    Reina, A.; Son, H. B.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.CrossRefGoogle Scholar
  17. [17]
    Liang, X.; Fu, Z.; Chou, S. Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 2007, 7, 3840–3844.CrossRefGoogle Scholar
  18. [18]
    Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M.; Schaefer, J.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.CrossRefGoogle Scholar
  19. [19]
    Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 2010, 21, 015601.CrossRefGoogle Scholar
  20. [20]
    Copel, M.; Reuter, M. C.; Kaxiras, E.; Tromp, R. M. Surfactants in epitaxial growth. Phys. Rev. Lett. 1989, 63, 632–635.CrossRefGoogle Scholar
  21. [21]
    Li, X.; Cai, W.; Colombo, L.; Ruoff, R. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  22. [22]
    Zhang, Z.; Duan, Q.; Wang, Z. Micro-mechanisms of fatigure damage in copper crystals. Acta Metall. Sin. 2005, 41, 1143–1149.Google Scholar
  23. [23]
    N’Diaye, A. T.; van Gastel, R.; Martinez-Galera, A. J.; Coraux, J.; Hattab, H.; Wall, D.; Meyer zu Heringdorf, F. J.; Horn-von Hoegen, M.; Gomez-Rodriguez, J. M.; Poelsema, B.; Busse, C.; Michely, T. In situ observation of stress relaxation in epitaxial graphene. New J. Phys. 2009, 11, 113056.CrossRefGoogle Scholar
  24. [24]
    Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nan Liu
    • 1
  • Zhonghuai Pan
    • 1
  • Lei Fu
    • 1
  • Chaohua Zhang
    • 1
  • Boya Dai
    • 1
  • Zhongfan Liu
    • 1
  1. 1.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations