Nano Research

, Volume 4, Issue 10, pp 979–986 | Cite as

CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes

  • Peixu Li
  • Shanshan Wang
  • Yi Jia
  • Zhen Li
  • Chunyan Ji
  • Luhui Zhang
  • Hongbian Li
  • Enzheng Shi
  • Zuqiang Bian
  • Chunhui Huang
  • Jinquan Wei
  • Kunlin Wang
  • Hongwei Zhu
  • Dehai Wu
  • Anyuan Cao
Research Article

Abstract

We report the fabrication of CuI-Si heterojunction solar cells with carbon nanotubes (CNTs) as a transparent electrode. A flexible CNT network was transferred onto the top of a polycrystalline CuI layer, making a conformal coating with good contact with the underlying CuI. The solar cells showed power conversion efficiencies in the range of 6% to 10.5%, while the efficiency degradation was less than 10% after the device was stored in air for 8 days. Compared with conventional rigid electrodes such as indium tin oxide (ITO) glass, the flexibility of the CNT films ensures better contact with the active layers and removes the need for press-contact electrodes. Degraded cells can recover their original performance by acid doping of the CNT electrode. Our results suggest that CNT films are suitable electrical contacts for rough materials and structures with an uneven surface.

Keywords

Carbon nanotubes flexible electrodes heterojunction solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_154_MOESM1_ESM.pdf (219 kb)
Supplementary material, approximately 218 KB.

References

  1. [1]
    Granqvist, C. G. Transparent conductive electrodes for electrochromic devices—a review. Appl. Phys. A-Mater. Sci. Process. 1993, 57, 19–24.CrossRefGoogle Scholar
  2. [2]
    Ito, S.; Takeuchi, T.; Katayama, T.; Sugiyama, M.; Matsuda, M.; Kitamura, T.; Wada, Y.; Yanagida, S. Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells. Chem. Mater. 2003, 15, 2824–2828.CrossRefGoogle Scholar
  3. [3]
    Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.CrossRefGoogle Scholar
  4. [4]
    Catrysse, P. B.; Fan, S. H. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 2010, 10, 2944–2949.CrossRefGoogle Scholar
  5. [5]
    Pasquier, A. D.; Unalan, H. E.; Kanwal, A.; Miller, S.; Chhowalla, M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 2005, 87, 203511.CrossRefGoogle Scholar
  6. [6]
    van de Lagemaat, J.; Barnes, T. M.; Rumbles, G.; Shaheen, S. E.; Coutts, T. J.; Weeks, C.; Levitsky, I.; Peltola, J.; Glatkowski, P. Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 2006, 88, 233503.CrossRefGoogle Scholar
  7. [7]
    Wu, K. B.; Ji, X. B.; Fei, J. J.; Hu, S. S. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine. Nanotechnology 2004, 15, 287–291.CrossRefGoogle Scholar
  8. [8]
    Geng, J. X.; Zeng, T. Y. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 2006, 128, 16827–16833.CrossRefGoogle Scholar
  9. [9]
    Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.CrossRefGoogle Scholar
  10. [10]
    Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.CrossRefGoogle Scholar
  11. [11]
    Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B.; Wang, L. D.; Liu, W. J.; Wang, Z. C.; Luo, J. B.; Wu, D. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.CrossRefGoogle Scholar
  12. [12]
    Landi, B. J.; Raffaelle, R. P.; Castro, S. L.; Bailey, S. G. Single-wall carbon nanotube-polymer solar cells. Prog. Photovoltaics 2005, 13, 165–172.CrossRefGoogle Scholar
  13. [13]
    Liang, C. W.; Roth, S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 2008, 8, 1809–1812.CrossRefGoogle Scholar
  14. [14]
    Wei, D. C.; Liu, Y. Q.; Cao, L. C.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis and photoelectric properties of coaxial Schottky junctions of ZnS and carbon nanotubes. Chem. Mater. 2010, 22, 288–293.CrossRefGoogle Scholar
  15. [15]
    Zhang, L. H.; Jia, Y.; Wang, S. S.; Li, Z.; Ji, C. Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Shi, E. Z.; Fang, Y.; Cao, A. Y. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 2010, 10, 3583–3589.CrossRefGoogle Scholar
  16. [16]
    Xia, X. Y.; Wang, S. S.; Jia, Y.; Bian, Z. Q.; Wu, D. H.; Zhang, L. H.; Cao, A. Y.; Huang, C. H. Infrared-transparent polymer solar cells. J. Mater. Chem. 2010, 20, 8478–8482.CrossRefGoogle Scholar
  17. [17]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.CrossRefGoogle Scholar
  18. [18]
    Karlsson, P. G.; Bolik, S.; Richter, J. H.; Mahrov, B.; Johansson, E.; Blomquist, J.; Uvdal, P.; Rensmo, H.; Siegbahn, H.; Sandell, A. Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO2/RuL2(NCS)2/CuI. J. Chem. Phys. 2004, 120, 11224–11232.CrossRefGoogle Scholar
  19. [19]
    Cheng, C. H.; Wang, J.; Du, G. T.; Shi, S. H.; Du, Z. J.; Fan, Z. Q.; Bian, J. M.; Wang, M. S. Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 2010, 97, 083305.CrossRefGoogle Scholar
  20. [20]
    Iimori, H.; Yamane, S.; Kitamura, T.; Murakoshi, K.; Imanishi, A.; Nakato, Y. High photovoltage generation at minority-carrier controlled n-Si/p-CuI heterojunction with morphologically soft CuI. J. Phys. Chem. C 2008, 112, 11586–11590.CrossRefGoogle Scholar
  21. [21]
    Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.CrossRefGoogle Scholar
  22. [22]
    Shin, D. W.; Lee, J. H.; Kim, Y. H.; Yu, S. M.; Park, S. Y.; Yoo, J. B. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 2009, 20, 475703.CrossRefGoogle Scholar
  23. [23]
    Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peixu Li
    • 1
  • Shanshan Wang
    • 2
    • 3
  • Yi Jia
    • 1
  • Zhen Li
    • 1
  • Chunyan Ji
    • 3
  • Luhui Zhang
    • 3
  • Hongbian Li
    • 3
  • Enzheng Shi
    • 3
  • Zuqiang Bian
    • 2
  • Chunhui Huang
    • 2
  • Jinquan Wei
    • 1
  • Kunlin Wang
    • 1
  • Hongwei Zhu
    • 1
    • 4
  • Dehai Wu
    • 1
  • Anyuan Cao
    • 3
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.College of EngineeringPeking UniversityBeijingChina
  4. 4.Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina

Personalised recommendations