Nano Research

, Volume 4, Issue 10, pp 963–970

Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors

  • Yasumitsu Miyata
  • Kazunari Shiozawa
  • Yuki Asada
  • Yutaka Ohno
  • Ryo Kitaura
  • Takashi Mizutani
  • Hisanori Shinohara
Research Article

Abstract

We have developed a process for chemical purification of carbon nanotubes for solution-processable thin-film transistors (TFTs) having high mobility. Films of the purified carbon nanotubes fabricated by simple drop coating showed carrier mobilities as high as 164 cm2V−1s−1, normalized transconductances of 0.78 Sm−1, and on/off current ratios of 106. Such high performance requires the preparation of a suspension of micrometer-long and highly purified semiconducting single-walled carbon nanotubes (SWCNTs). Our purification process includes length and electronic-type selective trapping of SWCNTs using recycling gel filtration with a mixture of surfactants. The results provide an important milestone toward printed high-speed and large-area electronics with roll-to-roll and ink-jet device fabrication.

Keywords

Single-walled carbon nanotubes separation thin-film transistors gel filtration dispersion optical absorption carrier mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_152_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1 MB.

References

  1. [1]
    Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 2008, 47, 4070–4098.CrossRefGoogle Scholar
  2. [2]
    Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 2005, 17, 2411–2425.CrossRefGoogle Scholar
  3. [3]
    Sun, Y. G.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.CrossRefGoogle Scholar
  4. [4]
    Ouyang, M.; Huang, J. L.; Lieber, C. M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025.CrossRefGoogle Scholar
  5. [5]
    Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.CrossRefGoogle Scholar
  6. [6]
    Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.CrossRefGoogle Scholar
  7. [7]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  8. [8]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  9. [9]
    Snow, E. S.; Campbell, P. M.; Ancona, M. G.; Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 2005, 86, 033105.CrossRefGoogle Scholar
  10. [10]
    Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 2010, 22, 2698–2701.CrossRefGoogle Scholar
  11. [11]
    Okimoto, H.; Takenobu, T.; Yanagi, K.; Miyata, Y.; Shimotani, H.; Kataura, H.; Iwasa, Y. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv. Mater. 2010, 22, 3981–3986.CrossRefGoogle Scholar
  12. [12]
    Shiraishi, M.; Takenobu, T.; Iwai, T.; Iwasa, Y.; Kataura, H.; Ata, M. Single-walled carbon nanotube aggregates for solution-processed field effect transistors. Chem. Phys. Lett. 2004, 394, 110–113.CrossRefGoogle Scholar
  13. [13]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefGoogle Scholar
  14. [14]
    Lee, S. Y.; Lee, S. W.; Kim, S. M.; Yu, W. J.; Jo, Y. W.; Lee, Y. H. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. Acs Nano 2011, 5, 2369–2375.CrossRefGoogle Scholar
  15. [15]
    Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.CrossRefGoogle Scholar
  16. [16]
    Qu, L. T.; Du, F.; Dai, L. M. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett. 2008, 8, 2682–2687.CrossRefGoogle Scholar
  17. [17]
    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.CrossRefGoogle Scholar
  18. [18]
    Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.CrossRefGoogle Scholar
  19. [19]
    Tanaka, T.; Jin, H. H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.CrossRefGoogle Scholar
  20. [20]
    Tanaka, T.; Jin, H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497–1500.CrossRefGoogle Scholar
  21. [21]
    Moshammer, K.; Hennrich, F.; Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2009, 2, 599–606.CrossRefGoogle Scholar
  22. [22]
    Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H. Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl. Phys. Express 2009, 2, 125002.CrossRefGoogle Scholar
  23. [23]
    Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270–9276.CrossRefGoogle Scholar
  24. [24]
    LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.CrossRefGoogle Scholar
  25. [25]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  26. [26]
    An, K. H.; Park, J. S.; Yang, C. M.; Jeong, S. Y.; Lim, S. C.; Kang, C.; Son, J. H.; Jeong, M. S.; Lee, Y. H. A diameter-selective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 2005, 127, 5196–5203.CrossRefGoogle Scholar
  27. [27]
    Rouhi, N.; Jain, D.; Zand, K.; Burke, P. J. Fundamental limits on the mobility of nanotube-based semiconducting inks. Adv. Mater. 2011, 23, 94–99.CrossRefGoogle Scholar
  28. [28]
    Fujii, S.; Tanaka, T.; Miyata, Y.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Performance enhancement of thin-film transistors by using high-purity semiconducting single-wall carbon nanotubes. Appl. Phys. Express 2009, 2, 071601.CrossRefGoogle Scholar
  29. [29]
    Wang, C.; Zhang, J. L.; Ryu, K. M.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  30. [30]
    Lee, C. W.; Weng, C. H.; Wei, L.; Chen, Y.; Chan-Park, M. B.; Tsai, C. H.; Leou, K. C.; Poa, C. H. P.; Wang, J. L.; Li, L. J. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 2008, 112, 12089–12091.CrossRefGoogle Scholar
  31. [31]
    Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Iijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.CrossRefGoogle Scholar
  32. [32]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.CrossRefGoogle Scholar
  33. [33]
    Wenseleers, W.; Vlasov, II; Goovaerts, E.; Obraztsova, E. D.; Lobach, A. S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 2004, 14, 1105–1112.CrossRefGoogle Scholar
  34. [34]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  35. [35]
    Belew, M.; Porath, J.; Fohlman, J.; Janson, J. C. Adsorption phenomena on Sephacryl S-200 Superfine. J. Chromatogr. 1978, 147, 205–212.CrossRefGoogle Scholar
  36. [36]
    Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804.CrossRefGoogle Scholar
  37. [37]
    Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.CrossRefGoogle Scholar
  38. [38]
    Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314.CrossRefGoogle Scholar
  39. [39]
    Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yasumitsu Miyata
    • 1
  • Kazunari Shiozawa
    • 1
  • Yuki Asada
    • 1
  • Yutaka Ohno
    • 2
  • Ryo Kitaura
    • 1
  • Takashi Mizutani
    • 2
  • Hisanori Shinohara
    • 1
  1. 1.Department of Chemistry and Institute for Advanced ResearchNagoya UniversityNagoyaJapan
  2. 2.Department of Quantum EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations