Nano Research

, 4:795 | Cite as

Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites

  • Jianfeng Shen
  • Min Shi
  • Bo Yan
  • Hongwei Ma
  • Na Li
  • Mingxin Ye


We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2-RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiO2-RGO composite exhibited excellent photocatalysis of hydrogen evolution.


Reduced graphene oxide TiO2 hydrothermal ionic liquid nanocomposite 

Supplementary material

12274_2011_136_MOESM1_ESM.pdf (625 kb)
Supplementary material, approximately 265 KB.


  1. [1]
    Zhu, J. Graphene production: New solutions to a new problem. Nat. Nanotech. 2008, 3, 528–529.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  3. [3]
    Myung, S.; Park, J.; Lee, H.; Kim, K. S.; Hong, S. Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv. Mater. 2010, 22, 2045–2049.CrossRefGoogle Scholar
  4. [4]
    Guo, C.; Yang, H.; Sheng, Z.; Lu, Z.; Song, Q.; Li, C. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014–3017.CrossRefGoogle Scholar
  5. [5]
    Jia, X.; Campos-Delgado, J.; Terrones, M.; Meunier, V.; Dresselhaus, M. S. Graphene edges: A review of their fabrication and characterization. Nanoscale 2011, 3, 86–95.CrossRefGoogle Scholar
  6. [6]
    Brownson, D. A. C.; Banks, C. E. Graphene electrochemistry: An overview of potential applications. Analyst, 2010, 135, 2768–2778.CrossRefGoogle Scholar
  7. [7]
    Huang, L.; Wu, B.; Yu, G.; Liu, Y. Graphene: Learning from carbon nanotubes. J. Mater. Chem. 2011, 21, 919–929.CrossRefGoogle Scholar
  8. [8]
    Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.CrossRefGoogle Scholar
  9. [9]
    Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.CrossRefGoogle Scholar
  10. [10]
    Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.CrossRefGoogle Scholar
  11. [11]
    Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed. 2009, 48, 7752–7777.CrossRefGoogle Scholar
  12. [12]
    Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.CrossRefGoogle Scholar
  13. [13]
    Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T.; Economopoulos, S. P.; Sarantopoulou, E.; Tagmatarchis, N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. J. Mater. Chem. 2011, 21, 109–117.CrossRefGoogle Scholar
  14. [14]
    Long, D.; Li, W.; Ling, L.; Jin, M.; Mochida, I.; Yoon, S. H. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 2010, 26, 16096–16102.CrossRefGoogle Scholar
  15. [15]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  16. [16]
    McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  17. [17]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  18. [18]
    Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.CrossRefGoogle Scholar
  19. [19]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefGoogle Scholar
  20. [20]
    Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem.C 2008, 112, 17554–17558.CrossRefGoogle Scholar
  21. [21]
    Wei, Z.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008, 8, 3141–3145.CrossRefGoogle Scholar
  22. [22]
    Liu, J.; Jeong, H.; Liu, J.; Lee, K.; Park, J.; Ahn, Y. H.; Lee, S. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 2010, 48, 2282–2289.CrossRefGoogle Scholar
  23. [23]
    Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanoshehets. ACS Nano 2010, 4, 2429–2437.CrossRefGoogle Scholar
  24. [24]
    Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.CrossRefGoogle Scholar
  25. [25]
    Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.CrossRefGoogle Scholar
  26. [26]
    Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.CrossRefGoogle Scholar
  27. [27]
    Zhou, X.; Wu, T.; Hu, B.; Yang, G.; Han, B. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 2010, 46, 3663–3665.CrossRefGoogle Scholar
  28. [28]
    Zhang, H.; Li, X.; Chen, G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J. Mater. Chem. 2009, 19, 8223–8231.CrossRefGoogle Scholar
  29. [29]
    Zhang, B.; Ning, W.; Zhang, J.; Qiao, X.; Zhang, J.; He, J.; Liu, C. Stable dispersions of reduced graphene oxide in ionic liquids. J. Mater. Chem. 2010, 20, 5401–5403.CrossRefGoogle Scholar
  30. [30]
    Hu, H.; Yang, H.; Huang, P.; Cui, D.; Peng, Y.; Zhang, J.; Lu, F.; Lian, J.; Shi, D. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem. Commun. 2010, 46, 3866–3868.CrossRefGoogle Scholar
  31. [31]
    Zheng, W.; Liu, X.; Yan, Z.; Zhu, L. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 2009, 3, 115–122.CrossRefGoogle Scholar
  32. [32]
    He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 2010, 48, 3139–3144.CrossRefGoogle Scholar
  33. [33]
    Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. G. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 2010, 4, 3033–3038.CrossRefGoogle Scholar
  34. [34]
    Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520–527.CrossRefGoogle Scholar
  35. [35]
    Chen, S.; Wang, Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.CrossRefGoogle Scholar
  36. [36]
    Shen, J.; Shi, M.; Li, N.; Yan, B.; Ma, H.; Hu, Y.; Ye, M. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.CrossRefGoogle Scholar
  37. [37]
    Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One step synthesis of graphene oxide-magentic nanoparticle composite. J. Phys. Chem. C 2010, 114, 1498–1503.CrossRefGoogle Scholar
  38. [38]
    Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.CrossRefGoogle Scholar
  39. [39]
    Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C, 2008, 112, 5263–5266.CrossRefGoogle Scholar
  40. [40]
    Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114, 12955–12959.CrossRefGoogle Scholar
  41. [41]
    Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.CrossRefGoogle Scholar
  42. [42]
    Liu, J.; Bai, H.; Wang, Y.; Liu, Z.; Zhang, X.; Sun, D. D. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater 2010, 20, 4175–4181.CrossRefGoogle Scholar
  43. [43]
    Li, B.; Zhang, X.; Li, X.; Wang, L.; Han, R.; Liu, B.; Zheng, W.; Li, X.; Liu, Y. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin films. Chem. Commun. 2010, 46, 3499–3501.CrossRefGoogle Scholar
  44. [44]
    Zhu, C.; Guo, S.; Wang, P.; Xing, L.; Fang, Y.; Zhai, Y.; Dong, S. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem. Commun. 2010, 46, 7148–7150.CrossRefGoogle Scholar
  45. [45]
    Zhang, X.; Li, H.; Cui, X.; Lin, Y. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 2801–2806.CrossRefGoogle Scholar
  46. [46]
    Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432.CrossRefGoogle Scholar
  47. [47]
    Shen, J.; Li, N.; Shi, M.; Hu, Y.; Ye, M. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interface Sci. 2010, 348, 377–383.CrossRefGoogle Scholar
  48. [48]
    Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82–85.CrossRefGoogle Scholar
  49. [49]
    Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.CrossRefGoogle Scholar
  50. [50]
    Tang, F.; Hou, L.; Guo, G. Preparation of TiO2 nanometer powders. J. Inorg. Mater. 2001, 16, 615–619.Google Scholar
  51. [51]
    Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.CrossRefGoogle Scholar
  52. [52]
    Akhavan, O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 2011, 49, 11–18.CrossRefGoogle Scholar
  53. [53]
    Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  54. [54]
    Akhavan, O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010, 4, 4174–4180.CrossRefGoogle Scholar
  55. [55]
    Hu, H.; Wang, X.; Wang, J.; Wan, L.; Liu, F.; Zheng, H.; Chen, R.; Xu, C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 2010, 484, 247–253.CrossRefGoogle Scholar
  56. [56]
    Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin films for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.CrossRefGoogle Scholar
  57. [57]
    Williams, G.; Kamat, P. V. Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.CrossRefGoogle Scholar
  58. [58]
    Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.CrossRefGoogle Scholar
  59. [59]
    Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053.CrossRefGoogle Scholar
  60. [60]
    Park, H. S.; Choi, B. G.; Yang, S. H.; Shin, W. H.; Kang, J. K.; Jung, D.; Hong, W. H. Ionic-liquid-assisted sonochemical synthesis of carbon nanotube-based nanohybrids: Control in the structures and interfacial characteristics. Small 2009, 5, 1754–1760.CrossRefGoogle Scholar
  61. [61]
    Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gracio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.CrossRefGoogle Scholar
  62. [62]
    Si, Y.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jianfeng Shen
    • 1
  • Min Shi
    • 1
  • Bo Yan
    • 1
  • Hongwei Ma
    • 1
  • Na Li
    • 1
  • Mingxin Ye
    • 1
  1. 1.Center of Special Materials and TechnologyFudan UniversityShanghaiChina

Personalised recommendations