Nano Research

, 4:767

In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts

  • Xiaofeng Feng
  • See Wee Chee
  • Renu Sharma
  • Kai Liu
  • Xu Xie
  • Qunqing Li
  • Shoushan Fan
  • Kaili Jiang
Research Article


We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the precursor gas, acetylene, at the growth temperature, and reinitiate the growth when acetylene is re-introduced. The switching between gasification and growth of CNTs can be repeated many times with the same catalyst. To understand the phenomenon, thermogravimetric analysis (TGA) coupled with mass spectroscopy was used to study the mechanism involved. It was shown that the residual water molecules in the growth chamber of the TEM react with and remove carbon atoms of CNTs as carbon monoxide vapor under the action of the catalyst, when the precursor gas is pumped out. This result contributes to a better understanding of the water-assisted and oxygen-assisted synthesis of CNT arrays, and provides useful clues on how to extend the lifetime and improve the activity of the catalysts. Open image in new window


Carbon nanotubes gasification growth iron catalyst environmental transmission electron microscopy (ETEM) thermogravimetric analysis (TGA) 

Supplementary material (19.7 mb)
Supplementary material, approximately 19.6 MB.


  1. [1]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Heidelberg, 2001.CrossRefGoogle Scholar
  2. [2]
    Dai, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.CrossRefGoogle Scholar
  3. [3]
    Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.CrossRefGoogle Scholar
  4. [4]
    Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.CrossRefGoogle Scholar
  5. [5]
    Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. H. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2000, 77, 2767–2769.CrossRefGoogle Scholar
  6. [6]
    Homma, Y.; Kobayashi, Y.; Ogino, T.; Takagi, D.; Ito, R.; Jung, Y. J.; Ajayan, P. M. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 2003, 107, 12161–12164.CrossRefGoogle Scholar
  7. [7]
    Schaper, A. K.; Hou, H. Q.; Greiner, A.; Phillipp, F. The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 2004, 222, 250–254.CrossRefGoogle Scholar
  8. [8]
    Esconjauregui, S.; Whelan, C. M.; Maex, K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669.CrossRefGoogle Scholar
  9. [9]
    Yasuda, A.; Kawase, N.; Mizutani, W. Carbon-nanotube formation mechanism based on in situ TEM observations. J. Phys. Chem. B 2002, 106, 13294–13298.CrossRefGoogle Scholar
  10. [10]
    Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.CrossRefGoogle Scholar
  11. [11]
    Sharma, R.; Iqbal, Z. In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 2004, 84, 990–992.CrossRefGoogle Scholar
  12. [12]
    Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 2005, 20, 1695–1707.CrossRefGoogle Scholar
  13. [13]
    Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron. Microsc. 2005, 54, 231–237.CrossRefGoogle Scholar
  14. [14]
    Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.CrossRefGoogle Scholar
  15. [15]
    Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 2007, 7, 602–608.CrossRefGoogle Scholar
  16. [16]
    Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 2007, 7, 2234–2238.CrossRefGoogle Scholar
  17. [17]
    Yoshida, H.; Takeda, S.; Uchiyama, T.; Knhno, H.; Homma, Y. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.CrossRefGoogle Scholar
  18. [18]
    Sharma, R.; Moore, E.; Rez, P.; Treacy, M. M. J. Site-specific fabrication of Fe particles for carbon nanotube growth. Nano Lett. 2009, 9, 689–694.CrossRefGoogle Scholar
  19. [19]
    Yoshida, H.; Shimizu, T.; Uchiyama, T.; Kohno, H.; Homma, Y.; Takeda, S. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano Lett. 2009, 9, 3810–3815.CrossRefGoogle Scholar
  20. [20]
    Zhang, L. N.; Feng C.; Chen Z.; Liu L.; Jiang K. L.; Li, Q. Q.; Fan, S. S. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 2008, 8, 2564–2569.CrossRefGoogle Scholar
  21. [21]
    Feng, X. F.; Liu, K.; Xie, X.; Zhou, R. F.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. J. Phys. Chem. C 2009, 113, 9623–9631.CrossRefGoogle Scholar
  22. [22]
    Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L. N.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.CrossRefGoogle Scholar
  23. [23]
    Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.CrossRefGoogle Scholar
  24. [24]
    Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.CrossRefGoogle Scholar
  25. [25]
    McKee, D. W. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 1983, 62, 170–175.CrossRefGoogle Scholar
  26. [26]
    Tamai, Y.; Watanabe, H., Tomita, A. Catalytic gasification of carbon with steam, carbon dioxide and hydrogen. Carbon 1977, 15, 103–106.CrossRefGoogle Scholar
  27. [27]
    Tomita, A.; Tamai, Y. Optical microscopic study on catalytic hyrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.CrossRefGoogle Scholar
  28. [28]
    McKee, D. W. Effect of metallic impurities on the gasification of graphite in water vapor and hydrogen. Carbon 1974, 12, 453–464.CrossRefGoogle Scholar
  29. [29]
    Baker, R. T. K.; Sherwood, R. D. Catalytic gasification of graphite by nickel in various gaseous environments. J. Catal. 1981, 70, 198–214.CrossRefGoogle Scholar
  30. [30]
    Figueiredo, J. L.; Bernardo, C. A.; Chludzinski, J. J. Jr.; Baker, R. T. K. The reversibility of filamentous carbon growth and gasification. J. Catal. 1988, 110, 127–138.CrossRefGoogle Scholar
  31. [31]
    Snoeck, J. -W.; Froment, G. F.; Fowles, M. Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 1997, 169, 240–249.CrossRefGoogle Scholar
  32. [32]
    Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.CrossRefGoogle Scholar
  33. [33]
    Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of Graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  34. [34]
    Shimada, T.; Yanase, H.; Morishita, K.; Hayashi, J.; Chiba, T. Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon 2004, 42, 1635–1639.CrossRefGoogle Scholar
  35. [35]
    Stolojan, V.; Tison, Y.; Chen, G. Y.; Silva, R. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Nano Lett. 2006, 6, 1837–1841.CrossRefGoogle Scholar
  36. [36]
    Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26, 51–62.CrossRefGoogle Scholar
  37. [37]
    Jiang, K. L.; Feng, C.; Liu, K.; Fan, S. S. A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 2007, 7, 1494–1504.CrossRefGoogle Scholar
  38. [38]
    Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272–2275.CrossRefGoogle Scholar
  39. [39]
    Huang, S. M.; Cai, Q. R.; Chen, J. Y.; Qian, Y.; Zhang, L. J. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094–2095.CrossRefGoogle Scholar
  40. [40]
    Liu, B.; Ren, W. C.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.CrossRefGoogle Scholar
  41. [41]
    Krivoruchko, O. P.; Zaikovskii, V. I. Formation of liquid phase in the carbon-metal system at unusually low temperature. Kinet. Catal. 1998, 39, 561–570.Google Scholar
  42. [42]
    Liu, K.; Jiang, K. L.; Feng, C.; Chen, Z.; Fan, S. S. A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon 2005, 43, 2850–2856.CrossRefGoogle Scholar
  43. [43]
    Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288–4292.CrossRefGoogle Scholar
  44. [44]
    Futaba, D. N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 2005, 95, 056104.CrossRefGoogle Scholar
  45. [45]
    Bystrzejewski, M.; Schonfelder, R.; Cuniberti, G.; Lange, H.; Huczko, A.; Gemming, T.; Pichler, T.; Buchner, B.; Rummeli, M. Exposing multiple roles of H2O in high-temperature enhanced carbon nanotube synthesis. Chem. Mater. 2008, 20, 6586–6588.CrossRefGoogle Scholar
  46. [46]
    Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA 2005, 102, 16141–16145.CrossRefGoogle Scholar
  47. [47]
    Wen, Q.; Qian, W. Z.; Wei, F.; Ning, G. Q. Oxygen-assisted synthesis of SWNTs from methane decomposition. Nanotechnology 2007, 18, 215610.CrossRefGoogle Scholar
  48. [48]
    Li, X. S.; Zhang, X. F.; Ci, L. J.; Shah, R.; Wolfe, C.; Kar, S.; Talapatra, S.; Ajayan, P. M. Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 2008, 19, 455609.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaofeng Feng
    • 1
  • See Wee Chee
    • 2
  • Renu Sharma
    • 2
  • Kai Liu
    • 1
  • Xu Xie
    • 1
  • Qunqing Li
    • 1
  • Shoushan Fan
    • 1
  • Kaili Jiang
    • 1
  1. 1.Department of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina
  2. 2.Leroy Eyring Center for Solid State ScienceArizona State UniversityTempeUSA
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Materials Science and EngineerigRensselaer Polytechnic InstituteTroyUSA
  5. 5.National Institute of Science and TechnologyGaithersburgUSA
  6. 6.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations