Nano Research

, Volume 4, Issue 8, pp 729–736 | Cite as

Advanced asymmetrical supercapacitors based on graphene hybrid materials

  • Hailiang Wang
  • Yongye Liang
  • Tissaphern Mirfakhrai
  • Zhuo Chen
  • Hernan Sanchez Casalongue
  • Hongjie Dai
Research Article

Abstract

Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of ∼1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2-RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2-carbon or Ni(OH)2-carbon electrode pairs. A high energy density of ∼48 W·h/kg at a power density of ∼0.23 kW/kg, and a high power density of ∼21 kW/kg at an energy density of ∼14 W·h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage. Open image in new window

Keywords

Asymmetrical supercapacitor graphene Ni(OH)2 RuO2 hybrid nanomaterials energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_129_MOESM1_ESM.pdf (873 kb)
Supplementary material, approximately 872 KB.

References

  1. [1]
    Burke, A. Ultracapacitors: How, why and where is the technology. J. Power Sources 2000, 91, 37–50.CrossRefGoogle Scholar
  2. [2]
    Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.CrossRefGoogle Scholar
  3. [3]
    Winter, M.; Brodd, R. What are batteries, fuel cells, and supercapacitors? J. Chem. Rev. 2004, 104, 4245–4269.CrossRefGoogle Scholar
  4. [4]
    Inagaki, M.; Konno, H.; Tanaike, O. Carbon materials for electrochemical capacitors. J. Power Sources 2010, 195, 7880–7903.CrossRefGoogle Scholar
  5. [5]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  6. [6]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  7. [7]
    Wang, Y.; Yu, L.; Xia, Y. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon. J. Electrochem. Soc. 2006, 153, A743-A748.Google Scholar
  8. [8]
    Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.CrossRefGoogle Scholar
  9. [9]
    Wu, Z.; Ren, W.; Wang, D.; Li, F.; Liu, B.; Cheng, H. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.CrossRefGoogle Scholar
  10. [10]
    Li, J.; Gao, F. Analysis of electrodes matching for asymmetric electrochemical capacitor. J. Power Sources 2009, 194, 1184–1193.CrossRefGoogle Scholar
  11. [11]
    Lang, J.; Kong, L.; Liu, M.; Luo, Y.; Kang, L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J. Solid State Electrochem. 2010, 14, 1533–1539.CrossRefGoogle Scholar
  12. [12]
    Wang, H.; Gao, Q.; Hu, J. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. J. Power Sources 2010, 195, 3017–3024.CrossRefGoogle Scholar
  13. [13]
    Kong, L.; Liu, M.; Lang, J.; Luo, Y.; Kang, L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc. 2009, 156, A1000-A1004.Google Scholar
  14. [14]
    Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.CrossRefGoogle Scholar
  15. [15]
    Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556–12558.CrossRefGoogle Scholar
  16. [16]
    Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  17. [17]
    Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.CrossRefGoogle Scholar
  18. [18]
    An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 2010, 10, 4295–4301.CrossRefGoogle Scholar
  19. [19]
    Wang, H.; Cui, L.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.CrossRefGoogle Scholar
  20. [20]
    Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.CrossRefGoogle Scholar
  21. [21]
    Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.CrossRefGoogle Scholar
  22. [22]
    Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.CrossRefGoogle Scholar
  23. [23]
    Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.CrossRefGoogle Scholar
  24. [24]
    Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.CrossRefGoogle Scholar
  25. [25]
    Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar
  26. [26]
    Lin, Y.; Lee, K.; Chen, K.; Huang, Y. Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 2009, 256, 1042–1045.CrossRefGoogle Scholar
  27. [27]
    Wang, Y.; Wang, Z.; Xia, Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 2005, 50, 5641–5646.CrossRefGoogle Scholar
  28. [28]
    Liu, Y.; Zhao, W.; Zhang, X. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim. Acta 2008, 53, 3296–3304.CrossRefGoogle Scholar
  29. [29]
    Bi, R.; Wu, X.; Cao, F.; Jiang, L.; Guo, Y.; Wan, L. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.CrossRefGoogle Scholar
  30. [30]
    Min, M.; Machida, K.; Jang, J. H.; Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 2006, 153, A334-A338.Google Scholar
  31. [31]
    Liu, X.; Pickup, P. G. Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources 2008, 176, 410–416.CrossRefGoogle Scholar
  32. [32]
    Lee, J.; Pathan, H. M.; Jung, K.; Joo, O. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 2006, 159, 1527–1531.CrossRefGoogle Scholar
  33. [33]
    Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.CrossRefGoogle Scholar
  34. [34]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  35. [35]
    Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.CrossRefGoogle Scholar
  36. [36]
    Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hailiang Wang
    • 1
  • Yongye Liang
    • 1
  • Tissaphern Mirfakhrai
    • 1
  • Zhuo Chen
    • 1
  • Hernan Sanchez Casalongue
    • 1
  • Hongjie Dai
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations