Nano Research

, Volume 4, Issue 7, pp 712–721 | Cite as

Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films

Research Article


Microscopic features of graphene segregated on Ni films prior to chemical transfer—including atomic structures of monolayers and bilayers, Moiré patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moiré patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moiré patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples. Open image in new window


Graphene scanning tunneling microscopy (STM) segregation Moiré pattern growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  4. [4]
    de Heer, W. A.; Berger, C.; Wu, X. S.; First, P. N.; Conrad, E. H.; Li, X. B.; Li, T. B.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.CrossRefGoogle Scholar
  5. [5]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–422.CrossRefGoogle Scholar
  6. [6]
    de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, M. C. G.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807.CrossRefGoogle Scholar
  7. [7]
    Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.CrossRefGoogle Scholar
  8. [8]
    Pan, Y.; Zhang, II. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.CrossRefGoogle Scholar
  9. [9]
    N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene Moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.CrossRefGoogle Scholar
  10. [10]
    Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.CrossRefGoogle Scholar
  11. [11]
    Oshima, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condens. Mater. 1997, 9, 1–20.CrossRefGoogle Scholar
  12. [12]
    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt (111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.CrossRefGoogle Scholar
  13. [13]
    Otero, G.; Gonzalez, C.; Pinardi, A. L.; Merino, P.; Gardonio, S.; Lizzit, S.; Blanco-Rey, M.; Van de Ruit, K.; Flipse, C. F. J.; Mendez, J.; de Andres, P. L.; Martin-Gago, J. A. Ordered vacancy network induced by the growth of epitaxial graphene on Pt(111). Phys. Rev. Lett. 2010, 105, 216102.CrossRefGoogle Scholar
  14. [14]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  15. [15]
    Gao, L.; Jeffrey, R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.CrossRefGoogle Scholar
  16. [16]
    Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. A universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.CrossRefGoogle Scholar
  17. [17]
    Hass, J.; Varchon, F.; Milla’n-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC (000\(\bar 1\)) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.CrossRefGoogle Scholar
  18. [18]
    Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 46, 109–113.CrossRefGoogle Scholar
  19. [19]
    de Laissardière, G. T.; Mayou, D.; Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 2010, 10, 804–808.CrossRefGoogle Scholar
  20. [20]
    Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.CrossRefGoogle Scholar
  21. [21]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. -S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefGoogle Scholar
  22. [22]
    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.CrossRefGoogle Scholar
  23. [23]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  24. [24]
    De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 2009, 8, 135–138.CrossRefGoogle Scholar
  25. [25]
    Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.CrossRefGoogle Scholar
  26. [26]
    Abergel, D. S. L.; Russell, A.; Fal’ko, V. I. Visibility of graphene flakes on a dielectric substrate. Appl. Phys. Lett. 2007, 91, 063125.CrossRefGoogle Scholar
  27. [27]
    Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.CrossRefGoogle Scholar
  28. [28]
    Nash, P. Phase Diagrams of Binary Nickel Alloys; ASM International (USA), 1991.Google Scholar
  29. [29]
    Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 2010, 21, 015601.CrossRefGoogle Scholar
  30. [30]
    Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasi freestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.CrossRefGoogle Scholar
  31. [31]
    Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.CrossRefGoogle Scholar
  32. [32]
    Fasolino, A.; Los, J. H. M.; Katsnelson, I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.CrossRefGoogle Scholar
  33. [33]
    Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Tagmatarchis, N.; Prato, M. Integrating single-wall carbon nanotubes into donor-accepter nanohybrids. Angew. Chem. Int. Ed. 2004, 43, 5526–5530.CrossRefGoogle Scholar
  34. [34]
    Pong, W. T.; Durkan, C. A review and outlook for an anomaly of scanning tunneling microscopy (STM) superlattices on graphite. J. Phys. D: Appl. Phys. 2005, 38, R329–R355.CrossRefGoogle Scholar
  35. [35]
    Amidror, I. The Theory of the Moiré Phenomenon; Dordrecht: Kluwer, 1999.Google Scholar
  36. [36]
    Murata, Y.; Petrova, V.; Kappes, B. B.; Ebnonnasir, A.; Petrov, I.; Xie, Y. -H.; Ciobanu, C.V.; Kodambaka, S. Moiré superstructures of graphene on faceted nickel islands. ACS Nano 2010, 4, 6509–6514.CrossRefGoogle Scholar
  37. [37]
    Yamamoto, K.; Fukushima, M.; Osaka, T.; Oshima, C. Charge-transfer mechanism for the (monolayer graphite)/Ni(111) system. Phys. Rev. B 1992, 45, 11358–11361.CrossRefGoogle Scholar
  38. [38]
    Cerda, E.; Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003, 90, 074302.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.College of Physics and ChemistryHenan Polytechnic UniversityHenanChina
  3. 3.Department of Advanced Materials and Nanotechnology, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations