Nano Research

, Volume 4, Issue 7, pp 623–634 | Cite as

Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation

  • Pei Zhao
  • Erik Einarsson
  • Georgia Lagoudas
  • Junichiro Shiomi
  • Shohei Chiashi
  • Shigeo Maruyama
Research Article

Abstract

We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, layer positions, and optical absorbance spectra of SWNT separation using the bile salt sodium deoxycholate (DOC) and the anionic salt sodium dodecyl sulfate (SDS), we clarify the roles and interactions of these two surfactants in yielding different DGU outcomes. The separation mechanism described here can also help in designing new DGU experiments by qualitatively predicting outcomes of different starting recipes, improving the efficacy of DGU and simplifying post-DGU fractionation.

Keywords

Single-walled carbon nanotubes density gradient ultracentrifugation sodium deoxycholate sodium dodecyl sulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_118_MOESM1_ESM.pdf (891 kb)
Supplementary material, approximately 890 KB.

References

  1. [1]
    Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics); Springer: Berlin, 2008.Google Scholar
  2. [2]
    Usrey, M. L.; Lippmann, E. S.; Strano, M. S. Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions. J. Am. Chem. Soc. 2005, 127, 16129–16135.CrossRefGoogle Scholar
  3. [3]
    Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.CrossRefGoogle Scholar
  4. [4]
    Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.CrossRefGoogle Scholar
  5. [5]
    Chen, Z.; Du, X.; Du, M.; Rancken, C. D.; Cheng, H.; Rinzler, A. G. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 2003, 3, 1245–1249.CrossRefGoogle Scholar
  6. [6]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.CrossRefGoogle Scholar
  7. [7]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  8. [8]
    Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.CrossRefGoogle Scholar
  9. [9]
    Ju, S. Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat. Nanotechnol. 2008, 3, 356–362.CrossRefGoogle Scholar
  10. [10]
    Nish, A.; Hwang, J. Y.; Doig, J.; Nicolas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.CrossRefGoogle Scholar
  11. [11]
    Green, A. A.; Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 1417–1422.CrossRefGoogle Scholar
  12. [12]
    Yanagi, K.; Miyata, Y.; Kataura, H. Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors; cyan, magenta, and yellow. Appl. Phys. Express 2008, 1, 034003.CrossRefGoogle Scholar
  13. [13]
    Niyogi, S.; Densmore C. G.; Doorn, S. K. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 1144–1153.CrossRefGoogle Scholar
  14. [14]
    Chernov, A. I.; Obraztsova, E. D. Metallic single-wall carbon nanotubes separated by density gradient ultracentrifugation. Phys. Status Solidi B 2009, 246, 2477–2481.CrossRefGoogle Scholar
  15. [15]
    Hennrich, F.; Arnold, K.; Lebedkin, S.; Quintillá, A.; Wenzel, W.; Kappes, M. M. Diameter sorting of carbon nanotubes by gradient centrifugation: Role of endohedral water. Phys. Status Solidi B 2007, 244, 3896–3900.CrossRefGoogle Scholar
  16. [16]
    Wei, L.; Lee, C. W.; Li, L. J.; Sudibya, H. G.; Wang, B.; Chen, L. Q.; Chen, P.; Yang, Y.; Chan-Park, M. B.; Chen, Y. Assessment of (n,m) selectively enriched small diameter single-walled carbon nanotubes by density differentiation from cobalt-incorporated MCM-41 for macroelectronics. Chem. Mater. 2008, 20, 7417–7424.CrossRefGoogle Scholar
  17. [17]
    Fleurier, R.; Lauret, J. S.; Flahaut, E.; Loiseau, A. Sorting and transmission electron microscopy analysis of single or double wall carbon nanotubes. Phys. Status Solidi B 2009, 246, 2675–2678.CrossRefGoogle Scholar
  18. [18]
    Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69–77.CrossRefGoogle Scholar
  19. [19]
    Zhao, P.; Einarsson, E.; Xiang, R.; Murakami, Y.; Maruyama, S. Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J. Phys. Chem. C 2010, 114, 4831–4834.CrossRefGoogle Scholar
  20. [20]
    Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.CrossRefGoogle Scholar
  21. [21]
    Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234.CrossRefGoogle Scholar
  22. [22]
    Miyauchi, Y.; Chiashi, S.; Murakami, Y.; Hayashida, Y.; Maruyama, S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 2004, 387, 198–203.CrossRefGoogle Scholar
  23. [23]
    Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.CrossRefGoogle Scholar
  24. [24]
    Fontell, K. Micellar behaviour in solutions of bile-acid salts I: Vapor pressure of the aqueous solutions and the osmotic activity of the bile-acid salts. Kolloid Z. Z. Polym. 1971, 244, 246–252.CrossRefGoogle Scholar
  25. [25]
    Mukerjee, P. The hydration of micelles of association colloidal electrolytes. J. Coll. Sci. Imp. U. Tok. 1964, 19, 722–728.Google Scholar
  26. [26]
    Wang, H.; Zhou, W.; Ho, D. L.; Winey, K. I.; Fischer, J. E.; Glinka, C. J.; Hobbie, E. K. Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study. Nano Lett. 2004, 4, 1789–1793.CrossRefGoogle Scholar
  27. [27]
    McDonald, T. J.; Engtrakul, C.; Jones, M.; Rumbles, G.; Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 2006, 110, 25339–25346.CrossRefGoogle Scholar
  28. [28]
    Nair, N.; Kim, W. J.; Braatz, R. D.; Strano, M. S. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 2008, 24, 1790–1795.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pei Zhao
    • 1
  • Erik Einarsson
    • 1
    • 2
  • Georgia Lagoudas
    • 3
  • Junichiro Shiomi
    • 1
  • Shohei Chiashi
    • 1
  • Shigeo Maruyama
    • 1
  1. 1.Department of Mechanical EngineeringThe University of TokyoTokyoJapan
  2. 2.Global Center of Excellence for Mechanical Systems InnovationThe University of TokyoTokyoJapan
  3. 3.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations