Nano Research

, Volume 4, Issue 6, pp 589–598 | Cite as

Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil

Research Article


Localisation microscopy overcomes the diffraction limit by measuring the position of individual molecules to obtain optical images with a lateral resolution better than 30 nm. Single molecule localisation microscopy was originally demonstrated only in two dimensions but has recently been extended to three dimensions. Here we develop a new approach to three-dimensional (3D) localisation microscopy by engineering of the point-spread function (PSF) of a fluorescence microscope. By introducing a linear phase gradient between the two halves of the objective pupil plane the PSF is split into two lateral lobes whose relative position depends on defocus. Calculations suggested that the phase gradient resulting from the very small tolerances in parallelism of conventional slides made from float glass would be sufficient to generate a two-lobed PSF. We demonstrate that insertion of a suitably chosen microscope slide that occupies half the objective aperture combined with a novel fast fitting algorithm for 3D localisation estimation allows nanoscopic imaging with detail resolution well below 100 nm in all three dimensions (standard deviations of 20, 16, and 42 nm in x, y, and z directions, respectively). The utility of the approach is shown by imaging the complex 3D distribution of microtubules in cardiac muscle cells that were stained with conventional near infrared fluorochromes. The straightforward optical setup, minimal hardware requirements and large axial localisation range make this approach suitable for many nanoscopic imaging applications.


Single molecules nanoscopy point-spread function engineering immunocytochemistry localisation microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_115_MOESM1_ESM.pdf (581 kb)
Supplementary material, approximately 581 KB.


  1. [1]
    Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. f. Mikr. Anat. 1873, 9, 413–468.CrossRefGoogle Scholar
  2. [2]
    Rust M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795.CrossRefGoogle Scholar
  3. [3]
    Hess, S. T.; Girirajan, T. P. K.; Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006, 91, 4258–4272.CrossRefGoogle Scholar
  4. [4]
    Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.CrossRefGoogle Scholar
  5. [5]
    Juette, M. F.; Gould, T. J.; Lessard, M. D.; Mlodzianoski, M. J.; Nagpure, B. S.; Bennett, B. T.; Hess, S. T.; Bewersdorf, J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 2008, 5, 527–529.CrossRefGoogle Scholar
  6. [6]
    Shtengel, G.; Galbraith, J. A.; Galbraith, C. G.; Lippincott-Schwartz, J.; Gillette, J. M.; Manley, S.; Sougrat, R.; Waterman, C. M.; Kanchanawong, P.; Davidson, M. W.; Fetter, R. D.; Hess, H. F. Interferometric fluorescent superresolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 2009, 106, 3125–3130.CrossRefGoogle Scholar
  7. [7]
    Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.CrossRefGoogle Scholar
  8. [8]
    Kao, H. P.; Verkman, A. S. Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position. Biophys. J. 1994, 67, 1291–1300.CrossRefGoogle Scholar
  9. [9]
    Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999.CrossRefGoogle Scholar
  10. [10]
    Evans, A. M.; Cannell, M. B. The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocytes. Cardiovasc. Res. 1997, 35, 294–302.CrossRefGoogle Scholar
  11. [11]
    Soeller, C.; Crossman, D.; Gilbert, R.; Cannell, M. B. Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 14958–14963.CrossRefGoogle Scholar
  12. [12]
    van de Linde, S.; Kasper, R.; Heilemann, M.; Sauer, M. Photoswitching microscopy with standard fluorophores. Appl. Phys. B-Lasers O. 2008, 93, 725–731.CrossRefGoogle Scholar
  13. [13]
    Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 2008, 5, 159–161.CrossRefGoogle Scholar
  14. [14]
    Baddeley, D.; Jayasinghe, I. D.; Cremer, C.; Cannell, M. B.; Soeller, C. Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys. J. 2009, 96, L22–24.CrossRefGoogle Scholar
  15. [15]
    Mlodzianoski, M. J.; Juette, M. F.; Beane, G. L.; Bewersdorf, J. Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt. Express 2009, 17, 8264–8277.CrossRefGoogle Scholar
  16. [16]
    Grover, G.; Pavani, S. R. P.; Piestun, R. Performance limits on three-dimensional particle localization in photon-limited microscopy. Opt. Lett. 2010, 35, 3306–3308.CrossRefGoogle Scholar
  17. [17]
    Pavani, S. R. P.; Piestun, R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Opt. Express 2008, 16, 22048–22057.CrossRefGoogle Scholar
  18. [18]
    Yajima, J.; Mizutani, K.; Nishizaka, T. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol. Biol. 2008, 15, 1119–1121.CrossRefGoogle Scholar
  19. [19]
    Baddeley, D.; Jayasinghe, I. D.; Lam, L.; Rossberger, S.; Cannell, M. B.; Soeller, C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 2009, 106, 22275–22280.CrossRefGoogle Scholar
  20. [20]
    Bates, M.; Huang, B.; Dempsey, G. T.; Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007, 317, 1749–1753.CrossRefGoogle Scholar
  21. [21]
    Bossi, M.; Foölling, J.; Belov, V. N.; Boyarskiy, V. P.; Medda, R.; Egner, A.; Eggeling, C.; Schoönle, A.; Hell, S. W. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 2008, 8, 2463–2468.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations