Advertisement

Nano Research

, Volume 4, Issue 6, pp 571–579 | Cite as

Assessment of high-frequency performance limits of graphene field-effect transistors

  • Jyotsna Chauhan
  • Jing GuoEmail author
Research Article

Abstract

High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz·μm divided by the gate length.

Keywords

Field effect transistor (FET) radio frequency (RF) carbon nanotube (CNT) intrinsic cut-off frequency transconductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  3. [3]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  4. [4]
    Meric, I.; Baklitskaya, N.; Kim, P.; Shepard, K.; RF performance of top-gated, zero-bandgap graphene field-effect transistors. Tech. Dig. Int. Electron. Device Meeting (IEDM) 2008, 4796738, 1–4.Google Scholar
  5. [5]
    Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, Ph. 100-GHz Transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.CrossRefGoogle Scholar
  6. [6]
    Liao, L.; Bai, J.; Cheng, R.; Lin, Y.; Jiang, S.; Qu, Y.; Huang, Y.; Duan, X. Sub-100 nm channel length graphene transistors. Nano Lett. 2010, 10, 3952–3956.CrossRefGoogle Scholar
  7. [7]
    Wu, Y.; Lin, Y.; Jenkins, K., et al. RF performance of short channel graphene field-effect transistor. Tech. Dig. Int. Electron. Device Meeting (IEDM) 2010, 226–228.Google Scholar
  8. [8]
    Liao, L.; Lin, Y. C.; Bao, M. Q.; Chen, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.CrossRefGoogle Scholar
  9. [9]
    Lin, Y. M.; Jenkins, K. A.; Garcia, A. V.; Small, J. P.; Farmer, D. B.; Avouris, P. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 2009, 9, 422–426.CrossRefGoogle Scholar
  10. [10]
    Schwierz, F. Graphene transistors. Nature Nanotechnology 2010, 5, 487–496.CrossRefGoogle Scholar
  11. [11]
    Datta, S. Quantum Transport: Atom to Transistor. Cambridge University Press: Cambridge, UK, 2005.Google Scholar
  12. [12]
    Svizhenko, A.; Anantram, M. P. Effect of scattering and contacts on current and electrostatics in carbon nanotubes. Phys. Rev. B 2005, 72, 085430.CrossRefGoogle Scholar
  13. [13]
    Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.CrossRefGoogle Scholar
  14. [14]
    Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.CrossRefGoogle Scholar
  15. [15]
    Katsnelson, M.; Novoselov, K.; Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar
  16. [16]
    Ryzhii, V.; Ryzhii, M.; Otsuji, T. Thermionic and tunneling transport mechanisms in graphene field-effect transistors. Phys. Stat. Sol. A 2008, 205, 1527–1533.CrossRefGoogle Scholar
  17. [17]
    Burke, P. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 2002, 1, 129–144.CrossRefGoogle Scholar
  18. [18]
    Chen, Y.; Ouyang, Y.; Guo, J.; Wu, T. Time-dependent quantum transport and non-quasistatic effects in carbon nanotube transistors. Appl. Phys. Lett. 2006, 89, 203122.CrossRefGoogle Scholar
  19. [19]
    Yoon, Y.; Ouyang, Y.; Guo, J. Effect of phonon scattering on intrinsic delay and cut-off frequency of carbon nano tube FETs. IEEE Trans. Electron. Dev. 2006, 53, 2467–2470.CrossRefGoogle Scholar
  20. [20]
    Burke, P. AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid-State Electron. 2004, 48, 1981–1986.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations