Nano Research

, Volume 4, Issue 6, pp 563–570 | Cite as

Microbial reduction of graphene oxide by Shewanella

Research Article

Abstract

Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.

Keywords

Electrogenic bacterial graphene green synthesis extracellular electron transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_112_MOESM1_ESM.pdf (692 kb)
Supplementary material, approximately 691 KB.

References

  1. [1]
    Geim, K. A.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  3. [3]
    Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.CrossRefGoogle Scholar
  4. [4]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  5. [5]
    Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.CrossRefGoogle Scholar
  6. [6]
    Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.CrossRefGoogle Scholar
  7. [7]
    Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075.CrossRefGoogle Scholar
  8. [8]
    Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116–6120.CrossRefGoogle Scholar
  9. [9]
    Mcallister, M. J.; Li, J.; Adamson, H. D.; Schnlepp, C. H.; Abdalam, A. A.; Liu, J.; Hrrrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’gomme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  10. [10]
    Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.CrossRefGoogle Scholar
  11. [11]
    Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.CrossRefGoogle Scholar
  12. [12]
    Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856.CrossRefGoogle Scholar
  13. [13]
    Myers, C. R.; Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240, 1319–1321.CrossRefGoogle Scholar
  14. [14]
    Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L. M.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M. Towards environmental systems biology of Shewanella. Nat. Rev. Microb. 2008, 6, 592–603.CrossRefGoogle Scholar
  15. [15]
    Pitts, K. E.; Dobbin, P. S.; Reyes-Ramirez, F.; Thomson, A. J.; Richardson, D. J.; Seward, H. E. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem. 2003, 278, 27758–27765.CrossRefGoogle Scholar
  16. [16]
    Myers, C. R.; Myers, J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 1997, 179, 1143–1152.Google Scholar
  17. [17]
    Beliaev, A. S.; Saffarini, D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 1998, 180, 6292–6297.Google Scholar
  18. [18]
    Myers, J. M.; Myers, C. R. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim. Biophys. Acta 1998, 1373, 237–251.CrossRefGoogle Scholar
  19. [19]
    Myers, J. M.; Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 2001, 67, 260–269.CrossRefGoogle Scholar
  20. [20]
    Beliaev, A. S.; Saffarini, D. A.; McLaughlin, J. L.; Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 2001, 39, 722–730.CrossRefGoogle Scholar
  21. [21]
    Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.CrossRefGoogle Scholar
  22. [22]
    Hau, H. H.; Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 2007, 61, 237–258.CrossRefGoogle Scholar
  23. [23]
    Liu, C.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 2002, 80, 637–649.CrossRefGoogle Scholar
  24. [24]
    Bretschger, O.; Obraztsova, A.; Sturm, C. A.; Chang, I. S.; Gorby, Y. A.; Reed, S. B.; Culley, D. E.; Reardon, C. L.; Barua, S.; Romine, M. F.; Zhou, J.; Beliaev, A. S.; Bouhenni, R.; Saffarini, D.; Mansfeld, F.; Kim, B.; Fredrickson, J. K.; Nealson, K. H. An exploration of current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 2007, 73, 7003–7012.CrossRefGoogle Scholar
  25. [25]
    Saltikov, C. W.; Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 2003, 100, 10983–10988.CrossRefGoogle Scholar
  26. [26]
    Tufano, K. J.; Reyes, C.; Saltikov, C. W.; Fendorf, S. Reductive processes controlling arsenic retention: Revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283–8289.CrossRefGoogle Scholar
  27. [27]
    Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  28. [28]
    Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  29. [29]
    Reiling, H. E.; Laurila, H.; Fiechter, A. Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J. Biotechnol. 1985, 2, 191–206.CrossRefGoogle Scholar
  30. [30]
    Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.CrossRefGoogle Scholar
  31. [31]
    Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 2005, 71, 4414–4426.CrossRefGoogle Scholar
  32. [32]
    Newman, D. K.; Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, 94–97.CrossRefGoogle Scholar
  33. [33]
    Reyes, C.; Murphy, J. N.; Saltikov, C. W. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3. Environ. Microbiol. 2010, 12, 1878–1878.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA
  2. 2.Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations