Nano Research

, Volume 4, Issue 5, pp 434–439 | Cite as

High-quality single-layer graphene via reparative reduction of graphene oxide

Research Article


Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350–410 S/cm (whilst retaining >96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.


Graphene graphene oxide reparative reduction transparent flexible electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_99_MOESM1_ESM.pdf (290 kb)
Supplementary material, approximately 290 KB.


  1. [1]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  2. [2]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  4. [4]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefGoogle Scholar
  5. [5]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  6. [6]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  7. [7]
    Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.CrossRefGoogle Scholar
  8. [8]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar
  9. [9]
    Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  10. [10]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefGoogle Scholar
  11. [11]
    Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.CrossRefGoogle Scholar
  12. [12]
    Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  13. [13]
    Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 2008, 8, 4283–4287.CrossRefGoogle Scholar
  14. [14]
    Lopez, V.; Sundaram, R. S.; Gomez-Navarro, C.; Olea, D.; Burghard, M.; Gomez-Herrero, J.; Zamora, F.; Kern, K. Chemical vapor deposition repair of graphene oxide: A route to highly conductive graphene monolayers. Adv. Mater. 2009, 21, 4683–4686.CrossRefGoogle Scholar
  15. [15]
    Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.CrossRefGoogle Scholar
  16. [16]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  17. [17]
    Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 2008, 18, 1518–1525.CrossRefGoogle Scholar
  18. [18]
    Ferrari, A. C. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relat. Mater. 2002, 11, 1053–1061.CrossRefGoogle Scholar
  19. [19]
    Choudhary, T. V.; Aksoylu, E.; Goodman, D. W. Nonoxidative activation of methane. Catal. Rev.-Sci. Eng. 2003, 45, 151–203.CrossRefGoogle Scholar
  20. [20]
    Yao, Y. G.; Feng, C. Q.; Zhang, J.; Liu, Z. F. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 2009, 9, 1673–1677.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.College of ChemistryNankai UniversityTianjinChina

Personalised recommendations