Nano Research

, Volume 3, Issue 6, pp 387–394 | Cite as

Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes

  • Liying Jiao
  • Li Zhang
  • Lei Ding
  • Jie Liu
  • Hongjie Dai
Open Access
Research Article

Abstract

Aligned graphene nanoribbon (GNR) arrays have been made by unzipping of aligned single-walled and few-walled carbon nanotube (CNT) arrays. Nanotube unzipping was achieved by a polymer-protected Ar plasma etching method, and the resulting nanoribbon array can be transferred onto any chosen substrate. Atomic force microscope (AFM) imaging and Raman mapping on the same CNTs before and after unzipping confirmed that ˜80% of CNTs were opened up to form single layer sub-10 nm GNRs. Electrical devices made from the GNRs (after annealing in H2 at high temperature) showed on/off current (Ion/Ioff) ratios up to 103 at room temperature, suggesting the semiconducting nature of the narrow GNRs. Novel GNR-GNR and GNR-CNT crossbars were fabricated by transferring GNR arrays across GNR and CNT arrays, respectively. The production of such ordered graphene nanoribbon architectures may allow for large scale integration of GNRs into nanoelectronics or optoelectronics.

Keywords

Graphene nanoribbon single-walled carbon nanotubes aligned unzipping plasma etching 

Supplementary material

12274_2010_1043_MOESM1_ESM.pdf (919 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361–394.CrossRefGoogle Scholar
  5. [5]
    Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.CrossRefADSGoogle Scholar
  6. [6]
    Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.CrossRefPubMedGoogle Scholar
  8. [8]
    Bai, J. W.; Duan, X. F.; Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009, 9, 2083–2087.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Wang, X. R.; Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem., In press.Google Scholar
  10. [10]
    Wu, Z. S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H. M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 2010, 3, 16–22.CrossRefGoogle Scholar
  11. [11]
    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y.; Ohba, T.; Kanoh, H.; Kaneko, K.; Endo, M.; Terrones, H.; Dresselhaus, M. S.; Terrones, M. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Wei, D. C.; Liu, Y. Q.; Zhang, H. L.; Huang, L. P.; Wu, B.; Chen, J. Y.; Yu, G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 2009, 131, 11147–11154.CrossRefPubMedGoogle Scholar
  13. [13]
    Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  15. [15]
    Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Zhang, Z. X.; Sun, Z. Z.; Yao, J.; Kosynkin, D. V.; Tour, J. M. Transforming carbon nanotube devices into nanoribbon devices. J. Am. Chem. Soc. 2009, 131, 13460–13463.CrossRefPubMedGoogle Scholar
  19. [19]
    Cano-Marquez, A. G.; Rodriguez-Macias, F. J.; Campos-Delgado, J.; Espinosa-Gonzalez, C. G.; Tristan-Lopez, F.; Ramirez-Gonzalez, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantu, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Elias, A. L.; Botello-Mendez, A. R.; Meneses-Rodriguez, D.; Gonzalez, V. J.; Ramirez-Gonzalez, D.; Ci, L. J.; Munoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 2010, 10, 366–372.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Kim, W. S.; Moon, S. Y.; Bang, S. Y.; Choi, B. G.; Ham, H.; Sekino, T.; Shim, K. B. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett. 2009, 95, 083103.CrossRefADSGoogle Scholar
  22. [22]
    Jiao, L. Y.; Wang, X. R.; Diankov, G.; Wang, H. L.; Dai, H. J. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. [Online early access]. DOI: 10.1038/nnano.2010.54.Google Scholar
  23. [23]
    Dai, H. J. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241.CrossRefADSGoogle Scholar
  24. [24]
    Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Springer-Verlag: Berlin, 2008.Google Scholar
  25. [25]
    Zhou, W. W.; Ding, L.; Liu, J. Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. 2009, 2, 593–598.CrossRefGoogle Scholar
  26. [26]
    Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.CrossRefPubMedGoogle Scholar
  27. [27]
    Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.CrossRefPubMedGoogle Scholar
  28. [28]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefADSGoogle Scholar
  29. [29]
    Cancado, L.G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Ismach, A.; Joselevich, E. Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett. 2006, 6, 1706–1710.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Liying Jiao
    • 1
  • Li Zhang
    • 1
  • Lei Ding
    • 1
  • Jie Liu
    • 2
  • Hongjie Dai
    • 1
  1. 1.Department of Chemistry and Laboratory for Advanced MaterialsStanford UniversityStanfordUSA
  2. 2.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations