Nano Research

, Volume 3, Issue 5, pp 317–325 | Cite as

One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals

  • Leyu WangEmail author
  • Yi Zhang
  • Yanyu Zhu
Open Access
Research Article


This paper describes the synthesis of new upconverting luminescent nanoparticles that consist of YF3:Yb3+/Er3+ functionalized with poly(acrylic acid) (PAA). Unlike the upconverting nanocrystals previously reported in the literature that emit visible (blue-green-red) upconversion fluorescence, these as-prepared nanoparticles emit strong near-infrared (NIR, 831 nm) upconversion luminescence under 980 nm excitation. Scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction were used to characterize the size and composition of the luminescent nanocrystals. Their average diameter was about 50 nm. The presence of the PAA coating was confirmed by infrared spectroscopy. The particles are highly dispersible in aqueous solution due to the presence of carboxylate groups in the PAA coating. By carrying out the synthesis in the absence of PAA, YF3:Yb3+/Er3+ nanorice materials were obtained. These nanorice particles are larger (∼700 nm in length) than the PAA-functionalized nanoparticles and show strong typical visible red (668 nm), rather than NIR (831 nm), upconversion fluorescence. The new PAA-coated luminescent nanoparticles have the pottential be used in a variety of bioanalytical and medical assays involving luminescence detection and fluorescence imaging, especially in vivo fluorescence imaging, due to the deep penetration of NIR radiation.


YF3 nanocrystals NIR upconverting luminescence poly(acrylic acid) 

Supplementary material

12274_2010_1035_MOESM1_ESM.pdf (387 kb)
Supplementary material, approximately 387 KB.


  1. [1]
    Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Edit. 2007, 46, 4342–4345.CrossRefGoogle Scholar
  2. [2]
    Wang, L. Y.; Yang, Z. H.; Zhang, Y.; Wang, L. Bifunctional nanoparticles with magnetization and luminescence. J. Phys. Chem. C 2009, 113, 3955–3959.CrossRefGoogle Scholar
  3. [3]
    Hill, H. D.; Hurst, S. J.; Mirkin, C. A. Curvature-induced base pair “slipping” effects in DNA-nanoparticle hybridization. Nano Lett. 2009, 9, 317–321.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefPubMedGoogle Scholar
  7. [7]
    Viswanatha, R.; Battaglia, D. M.; Curtis, M. E.; Mishima, T. D.; Johnson, M. B.; Peng, X. Shape control of doped semiconductor nanocrystals (d-dots). Nano Res. 2008, 1, 138–144.CrossRefGoogle Scholar
  8. [8]
    Sivakumar, S.; Diamente, P. R.; van Veggel, F. C. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem. -Eur. J. 2006, 12, 5878–5884.CrossRefGoogle Scholar
  9. [9]
    Santra, S.; Yang, H.; Dutta, D.; Stanley, J. T.; Holloway, P. H.; Tan, W. H.; Moudgil, B. M.; Mericle, R. A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. 2004, 2810–2811.Google Scholar
  10. [10]
    Wang, L. Y.; Li, Y. D. Green upconversion nanocrystals for DNA detection. Chem. Commun. 2006, 2557–2559.Google Scholar
  11. [11]
    Yezhelyev, M. V.; Qi, L.; Regan, R. M. O.; Nie, S.; Gao, X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006–9012.CrossRefPubMedGoogle Scholar
  12. [12]
    Mancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. Oxidative quenching and degradation of polymer-encapsulated quantum dots: New insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc. 2008, 130, 10836–10837.CrossRefPubMedGoogle Scholar
  13. [13]
    King-Heiden, T. C.; Wiecinski, P. N.; Mangham, A. N.; Metz, K. M.; Nesbit, D.; Pedersen, J. A.; Hamers, R. J.; Heideman, W.; Peterson, R. E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 2009, 43, 1605–1611.CrossRefPubMedGoogle Scholar
  14. [14]
    Gouveia-Neto, A. S.; da Costa, E. B.; Bueno, L. A; Ribeiro, S. J. L. Intense red upconversion emission in infrared excited holmium-doped PbGeO3-PbF2-CdF2 transparent glass ceramic. J. Lumin. 2004, 110, 79–84.CrossRefGoogle Scholar
  15. [15]
    Wang, L. Y.; Li, Y. D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Yue, G.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.CrossRefADSGoogle Scholar
  17. [17]
    Wang, L. Y.; Yan, R. X.; Hao, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Edit. 2005, 44, 6054–6057.CrossRefGoogle Scholar
  18. [18]
    van de Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A. K.; Niedbala, R. S.; Tanke, H. J. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 2001, 19, 273–276.CrossRefGoogle Scholar
  19. [19]
    Yan, R. X.; Li, Y. D. Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 2005, 15, 763–770.CrossRefGoogle Scholar
  20. [20]
    Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2104.CrossRefGoogle Scholar
  21. [21]
    Gao, L.; Ge, X.; Chai, Z.; Xu, G.; Wang, X.; Wang, C. Shape-controlled synthesis of octahedral ?-NaYF4 and its rare earth doped submicrometer particles in acetic acid. Nano Res. 2009, 2, 565–574.CrossRefGoogle Scholar
  22. [22]
    Yu, X.; Li, M.; Xie, M.; Chen, L.; Li, Y.; Wang, Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.CrossRefGoogle Scholar
  23. [23]
    Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.CrossRefPubMedGoogle Scholar
  24. [24]
    Wang, L. Y.; Li, P.; Li, Y. D. Down- and up-conversion luminescent nanorods. Adv. Mater. 2007, 19, 3304–3307.CrossRefGoogle Scholar
  25. [25]
    Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.CrossRefPubMedGoogle Scholar
  27. [27]
    Wang, Y.; Tu, L.; Zhao, J.; Sun, Y.; Kong, X.; Zhang, H. Upconversion luminescence of ?-NaYF4: Yb3+, Er3+@?-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.CrossRefGoogle Scholar
  28. [28]
    Schafer, H.; Ptacek, P.; Zerzouf, O.; Haase, M. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv. Funct. Mater. 2008, 18, 2913–2918.CrossRefGoogle Scholar
  29. [29]
    Grogan, M. J.; Kaizuka, Y.; Conrad, R. M.; Groves, J. T.; Bertozzi, C. R. Synthesis of lipidated green fluorescent protein and its incorporation in supported lipid bilayers. J. Am. Chem. Soc. 2005, 127, 14383–14387.CrossRefPubMedGoogle Scholar
  30. [30]
    Capobianco, J. A.; Vetrone, F.; Boyer, J. C.; Speghini, A.; Bettinelli, M. Enhancement of red emission (4F9/2-4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3: Er3+. J. Phys. Chem. B 2002, 106, 1181–1187.CrossRefGoogle Scholar
  31. [31]
    Suyver, J. F.; Aebischer, A.; Garcia-Revilla, S.; Gerner, P.; Gudel, H. U. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 2005, 71, 125123.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-BiosensingAnhui Normal UniversityWuhuChina

Personalised recommendations