Nano Research

, Volume 3, Issue 4, pp 264–270

In situ etching for total control over axial and radial nanowire growth

  • Magnus T. Borgström
  • Jesper Wallentin
  • Johanna Trägårdh
  • Peter Ramvall
  • Martin Ek
  • L. Reine Wallenberg
  • Lars Samuelson
  • Knut Deppert
Open Access
Research Article

Abstract

We report a method using in situ etching to decouple the axial from the radial nanowire growth pathway, independent of other growth parameters. Thereby a wide range of growth parameters can be explored to improve the nanowire properties without concern of tapering or excess structural defects formed during radial growth. We demonstrate the method using etching by HCl during InP nanowire growth. The improved crystal quality of etched nanowires is indicated by strongly enhanced photoluminescence as compared to reference nanowires obtained without etching.

Keywords

MOVPE nanowire growth in situ etching photoluminescence 

References

  1. [1]
    De Franceschi, S.; van Dam, J. A.; Bakkers, E. P. A. M.; Feiner L. F.; Gurevich, L.; Kouwenhoven, L. P. Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 2003, 83, 344–346.CrossRefADSGoogle Scholar
  2. [2]
    Bryllert, T.; Wernersson, L. E.; Froberg, L. E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron. Dev. Lett. 2006, 27, 323–325.CrossRefADSGoogle Scholar
  3. [3]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefPubMedGoogle Scholar
  5. [5]
    Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater. 2004, 3, 380–384.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 2007, 32, 117–122.Google Scholar
  7. [7]
    Regolin, I.; Sudfeld, D.; Luttjohann, S.; Khorenko, V.; Prost, W.; Kastner, J.; Dumpich, G.; Meier, C.; Lorke, A.; Tegude, F. J. Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs. J. Cryst. Growth 2007, 298, 607–611.CrossRefADSGoogle Scholar
  8. [8]
    Borgström, M.; Deppert, K.; Samuelson, L.; Seifert, W. Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: A growth study. J. Cryst. Growth 2004, 260, 18–22.CrossRefADSGoogle Scholar
  9. [9]
    Verheijen, M. A.; Immink, G.; deSmet, T.; Borgstrom, M. T.; Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 2006, 128, 1353–1359.CrossRefPubMedGoogle Scholar
  10. [10]
    Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y. N.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano. Lett. 2007, 7, 921–926.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Fickenscher, M. A.; Perera, S.; Hoang, T. B.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Zhang, X.; Zou, J. Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 2009, 9, 695–701.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Suhara, M.; Nagao, C.; Honji, H.; Miyamoto, Y.; Furuya, K.; Takemura, R. Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes. J. Cryst. Growth 1997, 179, 18–25.CrossRefADSGoogle Scholar
  14. [14]
    Stringfellow, G. B. Organometallic Vapor Phase Epitaxy: Theory and Practice; 2nd edn; Academic Press: San Diego, 1999.Google Scholar
  15. [15]
    Chen, C. H.; Kitamura, M.; Cohen, R. M.; Stringfellow, G. B. Growth of ultrapure InP by atmospheric-pressure organometallic vapor-phase epitaxy. Appl. Phys. Lett. 1986, 49, 963–965.CrossRefADSGoogle Scholar
  16. [16]
    Hsu, C. C.; Yuan, J. S.; Cohen, R. M.; Stringfellow, G. B. Doping studies for InP grown by organometallic vapor-phase epitaxy. J. Cryst. Growth 1986, 74, 535–542.CrossRefADSGoogle Scholar
  17. [17]
    Dick, K. A.; Deppert, K.; Samuelson, L.; Seifert, W. InAs nanowires grown by MOVPE. J. Cryst. Growth 2007, 298, 631–634.CrossRefADSGoogle Scholar
  18. [18]
    Dayeh, S. A.; Yu, E. T.; Wang, D. III–V nanowire growth mechanism: III–V ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Caneau, C.; Bhat, R.; Koza, M.; Hayes, J. R.; Esagui, R. Etching of InP by HCl in an OMVPE Reactor. J. Cryst. Growth 1991, 107, 203–208.CrossRefADSGoogle Scholar
  20. [20]
    Kitatani, T.; Tsuchiya, T.; Shinoda, K.; Aoki, M. In situ etching of InGaAsP/InP by using HCl in an MOVPE reactor. J. Cryst. Growth 2005, 274, 372–378.CrossRefADSGoogle Scholar
  21. [21]
    Magnusson, M. H.; Deppert, K.; Malm, J. O.; Bovin, J. O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999, 12, 45–48.CrossRefGoogle Scholar
  22. [22]
    Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34.CrossRefGoogle Scholar
  23. [23]
    Algra, R.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Skromme, B. J.; Stillman, G. E.; Oberstar, J. D.; Chan, S. S. Photoluminescence identification of the C and Be acceptor levels in InP. J. Electron. Mater. 1984, 13, 463–491.CrossRefADSGoogle Scholar
  25. [25]
    Fry, K. L.; Kuo, C. P.; Larsen, C. A.; Cohen, R. M.; Stringfellow, G. B.; Melas, A. OMVPE Growth of InP and Ga0.47In0.53As using ethyldimethylindium. J. Electron. Mater. 1986, 15, 91–96.CrossRefADSGoogle Scholar
  26. [26]
    Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X.; Zou, J. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648–654.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Bao, J. M.; Bell, D. C.; Capasso, F.; Wagner, J. B.; Martensson, T.; Tragardh, J.; Samuelson, L. Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 2008, 8, 836–841.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Okamoto, H.; Massalski, T. B. The Au-C (gold-carbon) system. J. Phase Equil. 1984, 5, 378–379.Google Scholar
  29. [29]
    Borgstrom, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Magnus T. Borgström
    • 1
  • Jesper Wallentin
    • 1
  • Johanna Trägårdh
    • 1
  • Peter Ramvall
    • 1
  • Martin Ek
    • 2
  • L. Reine Wallenberg
    • 2
  • Lars Samuelson
    • 1
  • Knut Deppert
    • 1
  1. 1.Solid State PhysicsLund UniversityLundSweden
  2. 2.Polymer & Materials Chemistry/nCHREMLund UniversityLundSweden
  3. 3.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations