Advertisement

Nano Research

, Volume 3, Issue 4, pp 244–255 | Cite as

Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect

  • Shao Feng Chen
  • Jian Ping Li
  • Kun Qian
  • Wei Ping Xu
  • Yang Lu
  • Wei Xin Huang
  • Shu Hong YuEmail author
Open Access
Research Article

Abstract

Well-dispersed M@TiO2 (M = Ag, Pd, Au, Pt) nanocomposite particles with a diameter of 200–400 nm can be synthesized on a large scale by a clean photochemical route which does not require any additives using spherical rutile nanoparticles as a support. The sizes of Pt, Au, and Pd nanoparticles formed on the surface of TiO2 particles are about 1 nm, 5 nm, and 5 nm, respectively, and the diameter of Ag nanoparticles is in the range 2–20 nm. Moreover, the noble metal nanoparticles have good dispersity on the particles of the TiO2 support, resulting in excellent catalytic activities. Complete conversion in catalytic CO oxidation is reached at temperatures as low as 333 and 363 K, respectively, for Pt@TiO2 and Pd@TiO2 catalysts. In addition, the antibacterial effects of the as-synthesized TiO2 nanoparticles, silver nanoparticles, and Au@TiO2 and Ag@TiO2 nanocomposites have been tested against Gram-negative Escherichia coli (E. coli) bacteria. The results demonstrate that the presence of the TiO2 matrix enhances the antibacterial effect of silver nanoparticles, and the growth of E. coli can be completely inhibited even if the concentration of Ag in Ag@TiO2 nanocomposite is very low (10 μg/mL).

Keywords

Nanocomposite noble metals CO oxidation antibacterial 

Supplementary material

12274_2010_1027_MOESM1_ESM.pdf (643 kb)
Supplementary material, approximately 643 KB.

References

  1. [1]
    Ertl, G. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 2008.CrossRefGoogle Scholar
  2. [2]
    Huang, S. Y.; Ganesan, P.; Park, S.; Popov B. N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 2009, 131, 13898–13899.CrossRefPubMedGoogle Scholar
  3. [3]
    Chen, J.; Lim B.; Lee, E. P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.CrossRefGoogle Scholar
  4. [4]
    Kaya, S.; Üner, D. CO oxidation over mono and bi-metallic sequentially impregnated Pd-Pt catalysts. Turk. J. Chem. 2008, 32, 645–652.Google Scholar
  5. [5]
    Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483.CrossRefGoogle Scholar
  6. [6]
    Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gramnegative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.CrossRefPubMedGoogle Scholar
  7. [7]
    Zhang, Y. W.; Peng, H. S.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 2008, 325, 371–376.CrossRefPubMedGoogle Scholar
  8. [8]
    Thiel, J.; Pakstis, L.; Buzby, S.; Raffi, M.; Ni, C.; Pochan, D. J.; Shah, S. I. Antibacterial properties of silver-doped titania. Small 2007, 3, 799–803.CrossRefPubMedGoogle Scholar
  9. [9]
    Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Reversible antimicrobial photoswitching in nanosilver. Small 2009, 5, 341–344.CrossRefPubMedGoogle Scholar
  10. [10]
    Kim, Y. H.; Kim, C. W.; Cha, H. G.; Lee, D. K.; Jo, B. K.; Ahn, G. W.; Hong, E. S.; Kim, J. C.; Kang, Y. S. Bulklike thermal behavior of antibacterial Ag-SiO2 nanocomposites. J. Phys. Chem. C 2009, 113, 5105–5110.CrossRefGoogle Scholar
  11. [11]
    Epling, W. S.; Cheekatamarla, P. K.; Lane, A. M. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams. Chem. Eng. J. 2003, 93, 61–68.CrossRefGoogle Scholar
  12. [12]
    Keleher, J.; Bashant, J.; Heldt, N.; Johnson, L.; Keleher, J.; Bashant, J.; Heldt, N.; Johnson, L.; Li, Y. Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J. Microbiol. Biotechnol. 2002, 18, 133–139.CrossRefGoogle Scholar
  13. [13]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefPubMedGoogle Scholar
  14. [14]
    Liu, S. J.; Wu, X. X.; Hu, B.; Gong, J. Y.; Yu, S. H. Novel anatase TiO2 boxes and tree-like structures assembled by hollow tubes: D,L-malic acid-assisted hydrothermal synthesis, growth mechanism, and photocatalytic properties. Cryst. Growth Des. 2009, 9, 1511–1518.CrossRefGoogle Scholar
  15. [15]
    Chen, W. J.; Tsai, P. J.; Chen, Y. C. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 2008, 4, 485–491.CrossRefPubMedGoogle Scholar
  16. [16]
    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.CrossRefPubMedGoogle Scholar
  17. [17]
    Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2-New photochemical processes. Chem. Rev. 2006, 106, 4428–4453.CrossRefPubMedGoogle Scholar
  18. [18]
    Haruta, H.; Yamada, M.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  19. [19]
    Haruta, M. Copper, silver and gold in catalysis-Preface. Catal. Today 1997, 36, 1.CrossRefGoogle Scholar
  20. [20]
    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281, 1647–1650.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe-Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.CrossRefGoogle Scholar
  24. [24]
    Qian, H. S.; Antonietti, M.; Yu, S. H. Hybrid “golden fleece”: Synthesis and catalytic performance of uniform carbon nanofibers and silica nanotubes embedded with a high population of noble-metal nanoparticles. Adv. Funct. Mater. 2007, 17, 637–643.CrossRefGoogle Scholar
  25. [25]
    Li, S.; Liu, G.; Lian H.; Jia, M.; Zhao, G.; Jiang, D.; Zhang, W. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal. Commun. 2008, 9, 1045–1049.CrossRefGoogle Scholar
  26. [26]
    Ko, E. Y.; Park, E. D.; Lee, H. C.; Lee, D.; Kim, S. Supported Pt.Co catalysts for selective CO oxidation in a hydrogen-rich stream. Angew. Chem. Int. Ed. 2007, 46, 734–737.CrossRefGoogle Scholar
  27. [27]
    Qian, K.; Sun, H.; Huang, W.; Fang, J.; Lv S.; He, B.; Jiang, Z.; Wei, S. Restructuring-induced activity SiO2-supported large Au nanoparticles in low-temperature CO oxidation. Chem. Eur. J. 2008, 14, 10595–10602.CrossRefGoogle Scholar
  28. [28]
    Qian, K.; Huang, W. X.; Jiang, Z.; Sun, H. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J. Catal. 2007, 248, 137–141.CrossRefGoogle Scholar
  29. [29]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 2004, 126, 3868–3879.CrossRefPubMedGoogle Scholar
  31. [31]
    Chan, S. C.; Barteau, M. A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Langmuir 2005, 21, 5588–5595.CrossRefPubMedGoogle Scholar
  32. [32]
    Ohtani, B.; Ogawa, Y.; Nishimoto, S. I. Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J. Phys. Chem. B. 1997, 101, 3746–3742.CrossRefGoogle Scholar
  33. [33]
    Pacholski, C.; Kornowski, A.; Weller, H. Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Ed. 2004, 43, 4774–4777.CrossRefGoogle Scholar
  34. [34]
    Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes, S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.CrossRefGoogle Scholar
  35. [35]
    Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45, 7824–7828.CrossRefGoogle Scholar
  36. [36]
    Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 2004, 126, 7790–7791.CrossRefPubMedGoogle Scholar
  37. [37]
    Wang, D.; Liu, J.; Huo, Q.; Nie, Z.; Lu, W.; Williford, R. E.; Jiang, Y. B. Surface-mediated growth of transparent, oriented, and well-defined nanocrystalline anatase titania films. J. Am. Chem. Soc. 2006, 128, 13670–13671.CrossRefPubMedGoogle Scholar
  38. [38]
    Swamy, V.; Muddle, B. C. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118.CrossRefADSGoogle Scholar
  39. [39]
    Wang, H. F.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J. X. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. USA. 2005, 102, 15752–15756.CrossRefADSGoogle Scholar
  40. [40]
    Atalic, B.; Uner, D. Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3. J. Catal. 2006, 241, 268–275.CrossRefGoogle Scholar
  41. [41]
    Park, J. Y.; Zhang, Y.; Grass, M.; Zhang, T.; Somorjai, G. Tuning of catalytic CO oxidation by changing composition of Rh.Pt bimetallic nanoparticles. Nano Lett. 2008, 8, 673–677.CrossRefPubMedADSGoogle Scholar
  42. [42]
    İnce, T.; Uysal, G.; Akın, A. N.; Yıldırım, R. Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams. Appl. Catal. A 2005, 292, 171–176.CrossRefGoogle Scholar
  43. [43]
    Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.CrossRefPubMedADSGoogle Scholar
  44. [44]
    Behm, R. J.; Christmann, K.; Ertl, G.; Van Hove, M. A.; Thiel, P. A.; Weinberg, W. H. Structure of CO adsorbed on Pd (100).LEED and HREELS analysis. Surf. Sci. 1979, 88, L59–L66.CrossRefGoogle Scholar
  45. [45]
    Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol. Rapid Commun. 2004, 25, 1632–1637.CrossRefGoogle Scholar
  46. [46]
    Wang Y. M.; Du, G. J.; Liu, H.; Liu, D.; Qin, S. B.; Wang, N.; Hu, C. G.; Tao, X. T.; Jiao, J.; Wang, J. Y.; Wang, Z. L. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 2008, 18, 1131–1137.CrossRefGoogle Scholar
  47. [47]
    Niňo-Martňnez, N.; Martňnez-Castaňon, G. A.; Aragón-Piňa, A.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 2008, 19, 065711.CrossRefADSGoogle Scholar
  48. [48]
    Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.CrossRefPubMedGoogle Scholar
  49. [49]
    Zhang, H.; Chen, G. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ. Sci. Technol. 2009, 43, 2905–2910.CrossRefPubMedGoogle Scholar
  50. [50]
    Hu, B.; Wang, S. B.; Wang, K.; Zhang, M.; Yu, S. H. Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 2008, 112, 11169–11174.CrossRefGoogle Scholar
  51. [51]
    Priya, R.; Baiju, K. V.; Shukla, S.; Biju, S.; Reddy, M. L. P.; Patil, K.; Warrier, K. G. K. Comparing ultraviolet and chemical reduction techniques for enhancing photocatalytic activity of silver oxide/silver deposited nanocrystalline anatase titania. J. Phys. Chem. C 2009, 113, 6243–6255.CrossRefGoogle Scholar
  52. [52]
    Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 2002, 365, 300–304.CrossRefADSGoogle Scholar
  53. [53]
    Wu, J. M.; Shih, H. C.; Wu, W. T. Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 2005, 17, 105–109.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shao Feng Chen
    • 1
  • Jian Ping Li
    • 2
  • Kun Qian
    • 3
  • Wei Ping Xu
    • 1
  • Yang Lu
    • 1
  • Wei Xin Huang
    • 3
  • Shu Hong Yu
    • 1
    Email author
  1. 1.Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of PharmacyAnhui University of Traditional Chinese MedicineHefeiChina
  3. 3.Division of Chemical Physics, Hefei National Laboratory for Physical Sciences at Microscale, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations