Nano Research

, Volume 3, Issue 3, pp 180–188 | Cite as

New insights into the growth mechanism and surface structure of palladium nanocrystals

  • Byungkwon Lim
  • Hirokazu Kobayashi
  • Pedro H. C. Camargo
  • Lawrence F. Allard
  • Jingyue Liu
  • Younan Xia
Open Access
Research Article

Abstract

This paper presents a systematic study of the growth mechanism for Pd nanobars synthesized by reducing Na2PdCl4 with L-ascorbic acid in an aqueous solution in the presence of bromide ions as a capping agent. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that the growth at early stages of the synthesis was dominated by particle coalescence, followed by shape focusing via recrystallization and further growth via atomic addition. We also investigated the detailed surface structure of the nanobars using aberration-corrected scanning TEM and found that the exposed {100} surfaces contained several types of defects such as an adatom island, a vacancy pit, and atomic steps. Upon thermal annealing, the nanobars evolved into a more thermodynamically favored shape with enhanced truncation at the corners.

Keywords

Palladium nanocrystals growth coalescence surface evolution 

Supplementary material

12274_2010_1021_MOESM1_ESM.pdf (192 kb)
Supplementary material, approximately 191 KB.

References

  1. [1]
    Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.CrossRefPubMedGoogle Scholar
  2. [2]
    Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  3. [3]
    Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588–3591.CrossRefGoogle Scholar
  8. [8]
    Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefPubMedADSGoogle Scholar
  10. [10]
    LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.CrossRefGoogle Scholar
  11. [11]
    Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.CrossRefGoogle Scholar
  12. [12]
    Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.CrossRefGoogle Scholar
  13. [13]
    Anwar, J.; Boateng, P. K. Computer simulation of crystallization from solution. J. Am. Chem. Soc. 1998, 120, 9600–9604.CrossRefGoogle Scholar
  14. [14]
    Niederberger, M.; Colfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.CrossRefPubMedGoogle Scholar
  15. [15]
    Watzky, M. A.; Finney, E. E.; Finke, R. G. Transition-metal nanocluster size vs. formation time and the catalytically effective nucleus number: A mechanism-based treatment. J. Am. Chem. Soc. 2008, 130, 11959–11969.CrossRefPubMedGoogle Scholar
  16. [16]
    Lim, B.; Wang, J.; Camargo, P. H. C.; Cobley, C. M.; Kim, M. J.; Xia, Y. Twin-induced growth of palladium-platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 6304–6308.CrossRefGoogle Scholar
  17. [17]
    Bisson, L.; Boissiere, C.; Nicole, L.; Grosso, D.; Jolivet, J. P.; Thomazeau, C.; Uzio, D.; Berhault, G.; Sanchez, C. Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater. 2009, 21, 2668–2678.CrossRefGoogle Scholar
  18. [18]
    Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  20. [20]
    Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 2007, 7, 1670–1675.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. -I.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.CrossRefPubMedGoogle Scholar
  23. [23]
    Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.CrossRefGoogle Scholar
  24. [24]
    Zheng, H.; Smith, R. K.; Jun, Y. -W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.CrossRefGoogle Scholar
  26. [26]
    Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.CrossRefPubMedGoogle Scholar
  27. [27]
    Niu, W.; Li, Z. -Y.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 2008, 8, 4440–4444.CrossRefGoogle Scholar
  28. [28]
    Zhang, Z.; Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 1997, 276, 377–383.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Byungkwon Lim
    • 1
  • Hirokazu Kobayashi
    • 1
  • Pedro H. C. Camargo
    • 1
  • Lawrence F. Allard
    • 2
  • Jingyue Liu
    • 3
  • Younan Xia
    • 1
  1. 1.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Center for Nanoscience and Department of Chemistry and BiochemistryUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations