Nano Research

, Volume 3, Issue 3, pp 147–169 | Cite as

Energy dissipation and transport in nanoscale devices

  • Eric PopEmail author
Open Access
Review Article


Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (∼10−8 W) to massive data centers (∼109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces.


Nanowire nanotube interface thermal transport rectification thermoelectric power dissipation 


  1. [1]
    EPA Report on Server and Data Center Energy Efficiency [Online]. (accessed sep 22, 2009)
  2. [2]
    Pop, E.; Sinha, S.; Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 2006, 94, 1587–1601.CrossRefGoogle Scholar
  3. [3]
    Cavin, R.; Zhirnov, V.; Herr, D.; Avila, A; Hutchby, J. Research directions and challenges in nanoelectronics. J. Nanopart. Res. 2006, 8, 841–858.CrossRefGoogle Scholar
  4. [4]
    Haensch, W.; Nowak, E. J.; Dennard, R. H.; Solomon, P. M.; Bryant, A.; Dokumaci, O. H.; Kumar, A.; Wang, X.; Johnson, J. B.; Fischetti, M. V. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 2006, 50, 339–361.CrossRefGoogle Scholar
  5. [5]
    Intel products [Online]. (accessed sep 22, 2009)
  6. [6]
    PC Energy Report 2009 [Online]. (accessed sep 22, 2009)
  7. [7]
    The Carbon Footprint of Email Spam Report [Online]. (accessed sep 22, 2009)
  8. [8]
    Energy & Environment Department at LBNL [Online]. (accessed sep 22, 2009)
  9. [9]
    Roy, K.; Prasad, S. Low-power CMOS VLSI Circuit Design; Wiley-VCH: Weinheim 2000.Google Scholar
  10. [10]
    Hanson, S.; Zhai, B.; Bernstein, K.; Blaauw, D.; Bryant, A.; Chang, L.; Das, K. K.; Haensch, W.; Nowak, E. J.; Sylvester, D. M. Ultralow-voltage minimum-energy CMOS. IBM J. Res. Dev. 2006, 50, 469–490.CrossRefGoogle Scholar
  11. [11]
    Zhai, B.; Blaauw, D.; Sylvester, D.; Flautner, K. The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE T. VLSI Syst. 2005, 13, 1239–1252.CrossRefGoogle Scholar
  12. [12]
    Akinwande, D.; Liang, J.; Chong, S.; Nishi, Y.; Wong, H. S. P. Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection. J. Appl. Phys. 2008, 104, 124514.ADSCrossRefGoogle Scholar
  13. [13]
    Jenkins, K. A.; Rim, K. Measurement of the effect of self-heating in strained-silicon MOSFETs. IEEE Electr. Device L. 2002, 23, 360–362.ADSCrossRefGoogle Scholar
  14. [14]
    Tenbroek, B.; Lee, M. S. L.; Redman-White, W.; Bunyan, R. J. T.; Uren, M. J. Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques. IEEE Trans. Electron Dev. 1996, 43, 2240–2248.ADSCrossRefGoogle Scholar
  15. [15]
    Clemente, S. Transient thermal response of power semiconductors to short power pulses. IEEE Trans. Power Electr. 1993, 8, 337–341.CrossRefGoogle Scholar
  16. [16]
    Yan, H.; Song, D.; Mak, K. F.; Chatzakis, I.; Maultzsch, J.; Heinz, T. F. Time-resolved Raman spectroscopy of optical phonons in graphite: Phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 2009, 80, 121403.ADSCrossRefGoogle Scholar
  17. [17]
    Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051.ADSCrossRefGoogle Scholar
  18. [18]
    Letcher, J. J.; Kang, K.; Cahill, D. G.; Dlott, D. D. Effects of high carrier densities on phonon and carrier lifetimes in Si by time-resolved anti-Stokes Raman scattering. Appl. Phys. Lett. 2007, 90, 252104.ADSCrossRefGoogle Scholar
  19. [19]
    Sinha, S.; Schelling, P. K.; Phillpot, S. R.; Goodson, K. E. Scattering of g-process longitudinal optical phonons at hotspots in silicon. J. Appl. Phys. 2005, 97, 023702.ADSCrossRefGoogle Scholar
  20. [20]
    Ledgerwood, M. L.; van Driel, H. M. Picosecond phonon dynamics and self-energy effects in highly photoexcited germanium. Phys. Rev. B 1996, 54, 4926–4935.ADSCrossRefGoogle Scholar
  21. [21]
    Ioffe Institute [Online]. (accessed sep 22, 2009)
  22. [22]
    Koswatta, S. O.; Lundstrom, M. S.; Nikonov, D. E. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. Nano Lett. 2007, 7, 1160–1164.PubMedADSCrossRefGoogle Scholar
  23. [23]
    Buttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 1986, 33, 3020–3026.ADSCrossRefGoogle Scholar
  24. [24]
    Das, M. P.; Green, F. Landauer formula without Landauer’s assumptions. J. Phys. -Condens. Mat. 2003, 15, 687–693.ADSCrossRefGoogle Scholar
  25. [25]
    Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.Google Scholar
  26. [26]
    Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2006.Google Scholar
  27. [27]
    Lake, R.; Datta, S. Energy balance and heat exchange in mesoscopic systems. Phys. Rev. B 1992, 46, 4757–4763.ADSCrossRefGoogle Scholar
  28. [28]
    Ouyang, Y.; Guo, J. Heat dissipation in carbon nanotube transistors. Appl. Phys. Lett. 2006, 89, 183122.ADSCrossRefGoogle Scholar
  29. [29]
    Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Ustunel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen, P. L. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 2004, 4, 517–520.ADSCrossRefGoogle Scholar
  30. [30]
    Pop, E.; Mann, D.; Goodson, K.; Dai, H. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.ADSCrossRefGoogle Scholar
  31. [31]
    Liao, A.; Zhao, Y.; Pop, E. Avalanche-induced current enhancement in semiconducting carbon nanotubes. Phys. Rev. Lett. 2008, 101, 256804.PubMedADSCrossRefGoogle Scholar
  32. [32]
    Chen, Y. -C.; Zwolak, M.; Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 2003, 3, 1691–1694.ADSCrossRefGoogle Scholar
  33. [33]
    Segal, D.; Nitzan, A. Heating in current carrying molecular junctions. J. Chem. Phys. 2002, 117, 3915–3927.ADSCrossRefGoogle Scholar
  34. [34]
    Galperin, M.; Saito, K.; Balatsky, A. V.; Nitzan, A. Cooling mechanisms in molecular conduction junctions. Phys. Rev. B 2009, 80, 115427.ADSCrossRefGoogle Scholar
  35. [35]
    Galperin, M.; Ratner, M. A.; Nitzan, A. Molecular transport junctions: Vibrational effects. J. Phys. -Condens. Mat. 2007, 103201.Google Scholar
  36. [36]
    Pop, E.; Mann, D.; Cao, J.; Wang, Q.; Goodson, K. E.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.PubMedADSCrossRefGoogle Scholar
  37. [37]
    D’Agosta, R.; Sai, N.; Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 2006, 6, 2935–2938.PubMedADSCrossRefGoogle Scholar
  38. [38]
    Koswatta, S. O.; Lundstrom, M. S.; Nikonov, D. E. Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors. Appl. Phys. Lett. 2008, 92, 043125.ADSCrossRefGoogle Scholar
  39. [39]
    Pop, E.; Rowlette, J.; Dutton, R. W.; Goodson, K. E. Joule heating under quasi-ballistic transport conditions in bulk and strained silicon devices. In Intl. Conf. on Simulation of Semic. Proc. and Dev. (SISPAD), Tokyo, Japan, 2005, pp. 307–310.Google Scholar
  40. [40]
    Stettler, M. A.; Alam, M. A.; Lundstrom, M. S. A critical examination of the assumptions underlying macroscopic transport equations for silicon devices. IEEE Trans. Electron Dev. 1993, 40, 733–740.ADSCrossRefGoogle Scholar
  41. [41]
    Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.PubMedADSCrossRefGoogle Scholar
  42. [42]
    Mahan, G. D.; Woods, L. M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 1998, 80, 4016–4019.ADSCrossRefGoogle Scholar
  43. [43]
    Pipe, K. P.; Ram, R. J.; Shakouri, A. Internal cooling in a semiconductor laser diode. IEEE Photonic Tech. L. 2002, 14, 453–455.ADSCrossRefGoogle Scholar
  44. [44]
    Shakouri, A.; Bowers, J. E. Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 1997, 71, 1234–1236.ADSCrossRefGoogle Scholar
  45. [45]
    Shakouri, A.; Lee, E. Y.; Smith, D. L.; Narayanamurti, V.; Bowers, J. E. Thermoelectric effects in submicron heterostructure barriers. Microscale Therm. Eng. 1998, 2, 37–47.CrossRefGoogle Scholar
  46. [46]
    Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566PubMedADSCrossRefGoogle Scholar
  47. [47]
    Wachutka, G. K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aid. Des. 1990, 9, 1141–1149.CrossRefGoogle Scholar
  48. [48]
    Lindefelt, U. Heat generation in semiconductor devices. J. Appl. Phys. 1994, 75, 942–957.ADSCrossRefGoogle Scholar
  49. [49]
    Sverdrup, P. G.; Ju, Y. S.; Goodson, K. E. Sub-continuum simulations of heat conduction in silicon-on-insulator transistors. J. Heat Transf. 2001, 123, 130–137.CrossRefGoogle Scholar
  50. [50]
    Lai, J.; Majumdar, A. Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J. Appl. Phys. 1996, 79, 7353–7361.ADSCrossRefGoogle Scholar
  51. [51]
    Pop, E.; Dutton, R. W.; Goodson, K. E. Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 2004, 96, 4998–5005.ADSCrossRefGoogle Scholar
  52. [52]
    Ju, Y. S.; Goodson, K. E. Phonon scattering in silicon thin films with thickness of order 100 nm. Appl. Phys. Lett. 1999, 74, 3005–3007.ADSCrossRefGoogle Scholar
  53. [53]
    Mazumder, S.; Majumdar, A. Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Trans. 2001, 123, 749–759.CrossRefGoogle Scholar
  54. [54]
    Henry, A. S.; Chen, G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanos. 2008, 5, 141–152.Google Scholar
  55. [55]
    Fischetti, M. V.; Neumayer, D. A.; Cartier, E. A. Effective electron mobility in Si inversion layers in MOS systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 2001, 90, 4587–4608.ADSCrossRefGoogle Scholar
  56. [56]
    Artaki, M.; Price, P. J. Hot phonon effects in silicon field-effect transistors. J. Appl. Phys. 1989, 65, 1317–1320.ADSCrossRefGoogle Scholar
  57. [57]
    Lugli, P.; Goodnick, S. M. Nonequilibrium longitudinal-optical phonon effects in GaAs-AlGaAs quantum wells. Phys. Rev. Lett. 1987, 59, 716–719.PubMedADSCrossRefGoogle Scholar
  58. [58]
    Jacoboni, C.; Reggiani, L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 1983, 55, 645–705.ADSCrossRefGoogle Scholar
  59. [59]
    Fischetti, M. V.; Laux, S. E. Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 1988, 38, 9721–9745.ADSCrossRefGoogle Scholar
  60. [60]
    Pop, E.; Dutton, R. W.; Goodson, K. E. Monte Carlo simulation of Joule heating in bulk and strained silicon. Appl. Phys. Lett. 2005, 86, 082101.ADSCrossRefGoogle Scholar
  61. [61]
    Rowlette, J. A; Goodson, K. E. Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Dev. 2008, 55, 220–232.ADSCrossRefGoogle Scholar
  62. [62]
    Sinha, S.; Pop, E.; Dutton, R. W.; Goodson, K. E. Nonequilibrium phonon distributions in sub-100 nm silicon transistors. J. Heat Transf. 2006, 128, 638–647.CrossRefGoogle Scholar
  63. [63]
    Raleva, K.; Vasileska, D.; Goodnick, S. M.; Nedjalkov, M. Modeling thermal effects in nanodevices. IEEE Trans. Electron Dev. 2008, 55, 1306–1316.ADSCrossRefGoogle Scholar
  64. [64]
    Vasileska, D.; Raleva, K.; Goodnick, S. M. Modeling heating effects in nanoscale devices: The present and the future. J. Comput. Electron. 2008, 7, 66–93.CrossRefGoogle Scholar
  65. [65]
    Lundstrom, M.; Ren, Z. Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Dev. 2002, 49, 133–141.ADSCrossRefGoogle Scholar
  66. [66]
    Wang, Y.; Cheung, P.; Oates, A.; Mason, P. Ballistic phonon enhanced NBTI. In IEEE International Reliability Physics Symposium (IRPS), Phoenix, USA, 2007, pp. 258–263.Google Scholar
  67. [67]
    Rego, L. G. C.; Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 1998, 81, 232–235.ADSCrossRefGoogle Scholar
  68. [68]
    Schwab, K.; Henriksen, E. A.; Worlock, J. M.; Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 2000, 2000, 974–977.ADSGoogle Scholar
  69. [69]
    Pop, E.; Mann, D.; Wang, Q.; Goodson, K. E.; Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100.PubMedADSCrossRefGoogle Scholar
  70. [70]
    Bunyan, R. J. T.; Uren, M. J.; Alderman, J. C.; Eccleston, W. Use of noise thermometry to study the effects of selfheating in submicrometer SOI MOSFETs. IEEE Electr. Device L. 1992, 13, 279–281.ADSCrossRefGoogle Scholar
  71. [71]
    Mautry, P. G.; Trager, J. Investigation of self-heating in VLSI and ULSI MOSFETs. In Intl. Conf. on Microelectronic Test Struct., San Diego, CA, USA, 1990, pp. 221–226.Google Scholar
  72. [72]
    Su, L. T.; Chung, J. E.; Antonadis, D. A.; Goodson, K. E.; Flik, M. I. Measurement and modeling of self-heating in SOI NMOSFETs. IEEE Trans. Electron Dev. 1994, 41, 69–75.ADSCrossRefGoogle Scholar
  73. [73]
    Jenkins, K. A.; Sun, J. Y. -C. Measurement of I-V curve of silicon-on-insulator (SOI) MOSFETs without self-heating. IEEE Electr. Device L. 1995, 16, 145–147.ADSCrossRefGoogle Scholar
  74. [74]
    Jin, W.; Liu, W.; Fung, S. K. H.; Chan, P. C. H.; Hu, C. SOI thermal impedance extraction methodology and its significance for circuit simulation. IEEE Trans. Electron Dev. 2001, 48, 730–736.ADSCrossRefGoogle Scholar
  75. [75]
    Lee, T. -Y.; Fox, R. M. Extraction of thermal resistance for fully-depleted SOI MOSFETs. In IEEE Int. SOI Conf., Nara, Japan, 1995, pp. 78–79.Google Scholar
  76. [76]
    Reyboz, M.; Daviot, R.; Rozeau, O.; Martin, P.; Paccaud, M. Compact modeling of the self heating effect in 120 nm multifinger body-contacted SOI MOSFETs for RF circuits. In IEEE Int. SOI Conf., 2004, pp. 159–161.Google Scholar
  77. [77]
    Maune, H.; Chiu, H. -Y.; Bockrath, M. Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phys. Lett. 2006, 89, 013109.ADSCrossRefGoogle Scholar
  78. [78]
    Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology 2008, 19, 295202.CrossRefGoogle Scholar
  79. [79]
    Shi, L.; Zhou, J.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phys. 2009, 105, 104306.ADSCrossRefGoogle Scholar
  80. [80]
    Yovanovich, M. M.; Culham, J. R.; Teertstra, P. Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks. IEEE Trans. Compon. Hybr. 1998, 21, 168–176.Google Scholar
  81. [81]
    Joy, R. C.; Schlig, E. S. Thermal properties of very fast transistors. IEEE Trans. Electron Dev. 1970, 17, 586–594.CrossRefGoogle Scholar
  82. [82]
    Micro Heat Transfer Lab (U. Waterloo) [Online]. (accessed sep 22, 2009).
  83. [83]
    Darwish, A. M.; Bayba, A. J.; Hung, H. A. Accurate determination of thermal resistance of FETs. IEEE Trans. Microw. Theory 2005, 53, 306–313.CrossRefGoogle Scholar
  84. [84]
    Rinaldi, N. On the modeling of the transient thermal behavior of semiconductor devices. IEEE Trans. Electron Dev. 2001, 48, 2796–2802.ADSCrossRefGoogle Scholar
  85. [85]
    Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.PubMedADSCrossRefGoogle Scholar
  86. [86]
    Steiner, M.; Freitag, M.; Perebeinos, V.; Tsang, J. C.; Small, J. P.; Kinoshita, M.; Yuan, D.; Liu, J.; Avouris, P. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nat. Nanotechnol. 2009, 4, 320–324.PubMedADSCrossRefGoogle Scholar
  87. [87]
    Reifenberg, J. P.; Kencke, D. L.; Goodson, K. E. The impact of thermal boundary resistance in phase-change memory devices. IEEE Electr. Device L. 2008, 29, 1112–1114.ADSCrossRefGoogle Scholar
  88. [88]
    Chen, I. R.; Pop, E. Compact thermal model for vertical nanowire phase-change memory cells. IEEE Trans. Electron Dev. 2009, 56, 1523–1528.Google Scholar
  89. [89]
    Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang, J. C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009, 9, 1883–1888.PubMedADSCrossRefGoogle Scholar
  90. [90]
    Chen, Z.; Jang, W.; Bao, W.; Lau, C. N.; Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910.ADSCrossRefGoogle Scholar
  91. [91]
    Amerasekera, A.; Duvvury, C. ESD in Silicon Integrated Circuits, 2nd Edn.; Wiley-VCH: Weinheim, 2002.Google Scholar
  92. [92]
    Jenkins, K. A.; Franch, R. L. Impact of self-heating on digital SOI and strained-silicon CMOS circuits. In IEEE Int. SOI Conf., Newport Beach, CA, USA, 2003, pp. 161–163.Google Scholar
  93. [93]
    Banerjee, K.; Amerasekera, A.; Cheung, N.; Hu, C. High-current failure model for VLSI interconnects under short-pulse stress conditions. IEEE Electr. Device L. 1997, 18, 405–407.ADSCrossRefGoogle Scholar
  94. [94]
    Dwyer, V. M.; Franklin, A. J.; Campbell, D. S. Thermal failure in semiconductor devices. Solid-State Electron. 1990, 33, 553–560.ADSCrossRefGoogle Scholar
  95. [95]
    Min, Y. J.; Palisoc, A. L.; Lee, C. C. Transient thermal study of semiconductor devices. IEEE Trans. Compon. Hybr. 1990, 13, 980–988.CrossRefGoogle Scholar
  96. [96]
    Castro Neto, A.; Guinea, F.; Miguel, N. Drawing conclusions from graphene. Phys. World 2006, 19, 33–37.Google Scholar
  97. [97]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer: Berlin, 2001.CrossRefGoogle Scholar
  98. [98]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.PubMedADSCrossRefGoogle Scholar
  99. [99]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.PubMedADSCrossRefGoogle Scholar
  100. [100]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.ADSCrossRefGoogle Scholar
  101. [101]
    Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.ADSCrossRefGoogle Scholar
  102. [102]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.PubMedADSCrossRefGoogle Scholar
  103. [103]
    Yu, C.; Shi, L.; Yao, Z.; Li, D.; Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005, 5, 1842–1846.PubMedADSCrossRefGoogle Scholar
  104. [104]
    Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.ADSCrossRefGoogle Scholar
  105. [105]
    Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.PubMedADSCrossRefGoogle Scholar
  106. [106]
    Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.PubMedADSCrossRefGoogle Scholar
  107. [107]
    Kuroda, M. A.; Cangellaris, A.; Leburton, J. -P. Nonlinear transport and heat dissipation in metallic carbon nanotubes. Phys. Rev. Lett. 2005, 95, 266803.PubMedADSCrossRefGoogle Scholar
  108. [108]
    Hasan, S.; Alam, M. A.; Lundstrom, M. S. Simulation of carbon nanotube FETs including hot-phonon and self-heating effects. IEEE Trans. Electron Dev. 2007, 54, 2352–2361.ADSCrossRefGoogle Scholar
  109. [109]
    Perebeinos, V.; Tersoff, J.; Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 2005, 94, 086802.PubMedADSCrossRefGoogle Scholar
  110. [110]
    Wang, X.; Zhang, L.; Lu, Y.; Dai, H.; Kato, Y. K.; Pop, E. Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Appl. Phys. Lett. 2007, 91, 261102.ADSCrossRefGoogle Scholar
  111. [111]
    Mann, D.; Kato, Y. K.; Kinkhabwala, A.; Pop, E.; Cao, J.; Wang, X.; Zhang, L.; Wang, Q.; Guo, J.; Dai, H. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 33–38.PubMedADSCrossRefGoogle Scholar
  112. [112]
    Mann, D.; Pop, E.; Cao, J.; Wang, Q.; Goodson, K. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. B 2006, 110, 1502–1505.PubMedCrossRefGoogle Scholar
  113. [113]
    Petrov, A. G.; Rotkin, S. V. Energy relaxation of hot carriers in single-wall carbon nanotubes by surface optical phonons of the substrate. JETP Lett. 2006, 84, 156–160.CrossRefGoogle Scholar
  114. [114]
    Rotkin, S. V.; Perebeinos, V.; Petrov, A. G.; Avouris, P. An essential mechanism of heat dissipation in carbon nanotube electronics. Nano Lett. 2009, 9, 1850–1855.PubMedADSCrossRefGoogle Scholar
  115. [115]
    Fratini, S.; Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 2008, 77, 195415.ADSCrossRefGoogle Scholar
  116. [116]
    Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-κ/metal-gate stack and its MOSFET characteristics. IEEE Electr. Device L. 2004, 25, 408–410.ADSCrossRefGoogle Scholar
  117. [117]
    Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.PubMedCrossRefGoogle Scholar
  118. [118]
    Xiong, F.; Liao, A.; Pop, E. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 2009, 95, 243103.ADSCrossRefGoogle Scholar
  119. [119]
    Deshpande, V. V.; Hsieh, S.; Bushmaker, A. W.; Bockrath, M.; Cronin, S. B. Spatially resolved temperature measurements of electrically heated carbon nanotubes. Phys. Rev. Lett. 2009, 102, 105501.PubMedADSCrossRefGoogle Scholar
  120. [120]
    Hsu, I. K.; Kumar, R.; Bushmaker, A.; Cronin, S. B.; Pettes, M. T.; Shi, L.; Brintlinger, T.; Fuhrer, M. S.; Cumings, J. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 2008, 92, 063119.ADSCrossRefGoogle Scholar
  121. [121]
    Huang, X. Y.; Zhang, Z. Y.; Liu, Y.; Peng, L. M. Analytical analysis of heat conduction in a suspended one-dimensional object. Appl. Phys. Lett. 2009, 95, 143109.ADSCrossRefGoogle Scholar
  122. [122]
    Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.PubMedADSCrossRefGoogle Scholar
  123. [123]
    Ong, Z. -Y.; Pop, E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2009, in press,
  124. [124]
    Plombon, J. J.; Andideh, E.; Dubin, V. M.; Maiz, J. Influence of phonon, geometry, impurity, and grain size on copper line resistivity. Appl. Phys. Lett. 2006, 89, 113124.ADSCrossRefGoogle Scholar
  125. [125]
    Steinhögl, W.; Schindler, G.; Steinlesberger, G.; Engelhardt, M. Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 2002, 66, 075414.ADSCrossRefGoogle Scholar
  126. [126]
    Steinhögl, W.; Schindler, G.; Steinlesberger, G.; Traving, M.; Engelhardt, M. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 2005, 97, 023706.ADSCrossRefGoogle Scholar
  127. [127]
    Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.ADSCrossRefGoogle Scholar
  128. [128]
    McConnell, A. D.; Uma, S.; Goodson, K. E. Thermal conductivity of doped polysilicon layers. J. Microelectromech. S. 2001, 10, 360–369.CrossRefGoogle Scholar
  129. [129]
    Srivastava, G. P. Theory of thermal conduction in nonmetals. MRS Bull. 2001, 445–450.Google Scholar
  130. [130]
    Glassbrenner, C. J.; Slack, G. A. Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 1964, 134, A1058–A1069.ADSCrossRefGoogle Scholar
  131. [131]
    Martin, P.; Aksamija, Z.; Pop, E.; Ravaioli, U. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 2009, 102, 125503.PubMedADSCrossRefGoogle Scholar
  132. [132]
    Liu, W.; Asheghi, M. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperature. J. Appl. Phys. 2005, 98, 123523.ADSCrossRefGoogle Scholar
  133. [133]
    Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.PubMedADSCrossRefGoogle Scholar
  134. [134]
    Chen, R.; Hochbaum, A. I.; Murphy, P.; Moore, J.; Yang, P.; Majumdar, A. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 2008, 101, 105501.PubMedADSCrossRefGoogle Scholar
  135. [135]
    Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. -K.; Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.PubMedADSCrossRefGoogle Scholar
  136. [136]
    Li, B.; Wang, L.; Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 2004, 93, 184301.PubMedADSCrossRefGoogle Scholar
  137. [137]
    Saira, O. -P.; Meschke, M.; Giazotto, F.; Savin, A. M.; Mottonen, M.; Pekola, J. P. Heat transistor: Demonstration of gate-controlled electronic refrigeration. Phys. Rev. Lett. 2007, 99, 027203.PubMedADSCrossRefGoogle Scholar
  138. [138]
    Dames, C. Solid-state thermal rectification with existing bulk materials. J. Heat Transf. 2009, 131, 061301.CrossRefGoogle Scholar
  139. [139]
    Jezowski, A.; Rafalowicz, J. Heat flow asymmetry on a junction of quartz with graphite. Phys. Status Solidi A 1978, 47, 229–232.ADSCrossRefGoogle Scholar
  140. [140]
    Marucha, C.; Mucha, J.; Rafalowicz, J. Heat flow rectification in inhomogeneous GaAs. Phys. Status Solidi A 1975, 31, 269–273.ADSCrossRefGoogle Scholar
  141. [141]
    Kobayashi, W.; Teraoka, Y.; Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 2009, 95, 171905.ADSCrossRefGoogle Scholar
  142. [142]
    Yang, N.; Zhang, G.; Li, B. Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 2008, 93, 243111.ADSCrossRefGoogle Scholar
  143. [143]
    Casati, G. Device physics: The heat is on—and off. Nat. Nanotechnol. 2007, 2, 23–24.PubMedADSCrossRefGoogle Scholar
  144. [144]
    Roberts, N. A.; Walker, D. G. Monte Carlo study of thermal transport of frequency and direction dependent reflecting boundaries in high Kn systems. In 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, Florida, USA, 2008, pp. 993–998.Google Scholar
  145. [145]
    Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-state thermal rectifier. Science 2006, 314, 1121–1124.PubMedADSCrossRefGoogle Scholar
  146. [146]
    Scheibner, R.; Konig, M.; Reuter, D.; Wieck, A. D.; Gould, C.; Buhmann, H.; Molenkamp, L. W. Quantum dot as thermal rectifier. New J. Phys. 2008, 083016.Google Scholar
  147. [147]
    Wang, Z.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N. -H.; Cahill, D. G.; Dlott, D. D. Ultrafast flash thermal conductance of molecular chains. Science 2007, 317, 787–790.PubMedADSCrossRefGoogle Scholar
  148. [148]
    Costescu, R. M.; Wall, M. A.; Cahill, D. G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 2003, 67, 054302.ADSCrossRefGoogle Scholar
  149. [149]
    Lyeo, H. -K.; Cahill, D. G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301.ADSCrossRefGoogle Scholar
  150. [150]
    Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M. et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2003, 2, 731–734.PubMedADSCrossRefGoogle Scholar
  151. [151]
    Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transf. 2008, 130, 052401.CrossRefGoogle Scholar
  152. [152]
    Stevens, R. J.; Smith, A. N.; Norris, P. M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transf. 2005, 127, 315–322.CrossRefGoogle Scholar
  153. [153]
    Tong, T.; Majumdar, A. Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Instrum. 2006, 77, 104902.ADSCrossRefGoogle Scholar
  154. [154]
    Yamane, T.; Nagai, N.; Katayama, S.; Todoki, M. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 2002, 91, 9772–9776.ADSCrossRefGoogle Scholar
  155. [155]
    Lee, S. -M.; Cahill, D. G. Heat transport in thin dielectric films. J. Appl. Phys. 1997, 81, 2590–2595.ADSCrossRefGoogle Scholar
  156. [156]
    Dames, C.; Chen, G. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 2005, 76, 124902.ADSCrossRefGoogle Scholar
  157. [157]
    Kim, E. -K.; Kwun, S. -I.; Lee, S. -M.; Seo, H.; Yoon, J. -G. Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface. Appl. Phys. Lett. 2000, 76, 3864–3866.ADSCrossRefGoogle Scholar
  158. [158]
    Ge, Z.; Cahill, D. G.; Braun, P.V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 2006, 96, 186101.PubMedADSCrossRefGoogle Scholar
  159. [159]
    Gundrum, B. C.; Cahill, D. G.; Averback, R. S. Thermal conductance of metal-metal interfaces. Phys. Rev. B 2005, 72, 245426.ADSCrossRefGoogle Scholar
  160. [160]
    Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.ADSCrossRefGoogle Scholar
  161. [161]
    Pop, E. Self-Heating and Scaling of Thin-Body Transistors. Ph.D. Thesis, Stanford Univ., Stanford, CA; 2005. [Online]. (accessed Sep 22, 2009).Google Scholar
  162. [162]
    Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B Condens. Mat. 2002, 323, 67–70.ADSCrossRefGoogle Scholar
  163. [163]
    Pop, E; Chui, C. O.; Sinha, S.; Dutton, R.; Goodson, K. Electro-thermal comparison and performance optimization of thin-body SOI and GOI MOSFETs. In Intl. Electron Dev. Mtg. (IEDM), San Francisco CA, USA, 2004, pp. 411–414.Google Scholar
  164. [164]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–154.ADSCrossRefGoogle Scholar
  165. [165]
    Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Matsue, M.; Rokuta, E.; Otani, S.; Oshima, C. Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation. Surf. Interface Anal. 2005, 37, 133–136.CrossRefGoogle Scholar
  166. [166]
    Reifenberg, J. P.; Chang, K. -W.; Panzer, M. A.; Kim, S.; Rowlette, J. A.; Asheghi, M.; Wong, H. S. P.; Goodson, K. E. Thermal boundary resistance measurements for phase-change memory devices. IEEE Electr. Device L. 2010, 31, 56–58.ADSCrossRefGoogle Scholar
  167. [167]
    Stoner, R. J.; Maris, H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 1993, 48, 16373–16387.ADSCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Micro and Nanotechnology Lab and Beckman InstituteUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations