Nano Research

, Volume 3, Issue 2, pp 126–137 | Cite as

Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia

  • Izabela Janowska
  • Kambiz Chizari
  • Ovidiu Ersen
  • Spyridon Zafeiratos
  • Driss Soubane
  • Victor Da Costa
  • Virginie Speisser
  • Christine Boeglin
  • Matthieu Houllé
  • Dominique Bégin
  • Dominique Plee
  • Marc-Jacques Ledoux
  • Cuong Pham-Huu
Open Access
Research Article


Few-layer graphene (FLG) sheets with sizes exceeding several micrometers have been synthesized by exfoliation of expanded graphite in aqueous solution of ammonia under microwave irradiation, with an overall yield approaching 8 wt.%. Transmission electron microscopy (in bright-field and dark-field modes) together with electron diffraction patterns and atomic force microscopy confirmed that this graphene material consisted mostly of mono-, bi- or few-layer graphene (less than ten layers). The high degree of surface reduction was confirmed by X-ray photoelectron and infrared spectroscopies. In addition, the high stability of the FLG in the liquid medium facilitates the deposition of the graphene material onto several substrates via low-cost solution-phase processing techniques, opening the way to subsequent applications of the material.


Graphene transmission electron microscopy (TEM) expanded graphite exfoliation microwaves 

Supplementary material

12274_2010_1017_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 340 KB.


  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Novoselov, K. S.; Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  7. [7]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Dato, A.; Radmilovic, V.; Lee, Z. H.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Janowska, I.; Ersen, O.; Jacob, T.; Vennégues, P.; Bégin, D.; Ledoux, M. J.; Pham-Huu, C. Catalytic unzipping of carbon nanotubes to few-layer graphene under microwave irradiation. Appl. Catal. A 2009, 371, 22–30.CrossRefGoogle Scholar
  12. [12]
    Janowska, I.; Pham-Huu, C.; Ersen, O.; Begin, D.; Ledoux, M. J. French Patent, 09-00100, 2009.Google Scholar
  13. [13]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Cano-Marquez, A. G.; Rodriguez-Macias, F. J.; Campos-Delgado, J.; Espinosa-Gonzalez, C. G.; Tristan-Lopez, F.; Ramirez-Gonzalez, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantu, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Biswas, S.; Drzal, L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett. 2008, 9, 167–172.CrossRefADSGoogle Scholar
  16. [16]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  17. [17]
    Drzal, L. T.; Fukushima, H. Composite material for batteries, electrodes, comprises expanded graphite obtained by heating acid intercalated graphite precursor with first polymer, dispersed in second polymer. U. S. Patent, 20060148966-A1, Feb. 27, 2006.Google Scholar
  18. [18]
    Le Doussal, P.; Radzihovsky, L. Self-consistent theory of polymerized membranes. Phys. Rev. Lett. 1992, 69, 1209–1212.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Nelson, D. R.; Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. France 1987, 48, 1085–1092.CrossRefGoogle Scholar
  20. [20]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 1968, 176, 250–254.CrossRefADSGoogle Scholar
  22. [22]
    Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Coutinho, A. R.; Rocha, J. D.; Luengo, C. A. Preparing and characterizing biocarbon electrodes. Fuel Process. Technol. 2000, 67, 93–102.CrossRefGoogle Scholar
  24. [24]
    Deprez, N.; McLachlan, D. S. The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. J. Phys. D: Appl. Phys. 1988, 21, 101–107.CrossRefADSGoogle Scholar
  25. [25]
    Tang, Y. B.; Lee, C. S.; Chen, Z. H.; Yuan, G. D.; Kang, Z. H.; Luo, L. B.; Song, H. S.; Liu, Y.; He, Z. B.; Zhang, W. J.; Elello, I.; Lee, S. T. High-quality graphenes via a facile quenching method for field-effect transistors. Nano Lett. 2009, 9, 1374–1377.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  27. [27]
    Bongiorno, G.; Blomqvist, M.; Piseri, P.; Milani, P.; Lenardi, C.; Ducati, C.; Caruso T.; Rudolf, P.; Wachtmeister, S.; Csillag, S.; Coronel, E. Nanostructured CNx (0 < x < 0.2) films grown by supersonic cluster beam deposition. Carbon 2005, 43, 1460–1469.CrossRefGoogle Scholar
  28. [28]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefPubMedGoogle Scholar
  29. [29]
    Wei, D.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefPubMedGoogle Scholar
  31. [31]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefPubMedGoogle Scholar
  32. [32]
    Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefPubMedGoogle Scholar
  33. [33]
    Kaiser, A. B.; Gomez-Navarro, C.; Sundaram, R. S.; Burghard, M.; Kern, K. Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 2009, 9, 1787–1792.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Lherbier, A.; Blase, X.; Niquet, Y. M.; Triozon, F.; Roche, S. Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 2008, 101, 036808.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Izabela Janowska
    • 1
  • Kambiz Chizari
    • 1
  • Ovidiu Ersen
    • 2
  • Spyridon Zafeiratos
    • 1
  • Driss Soubane
    • 1
  • Victor Da Costa
    • 2
  • Virginie Speisser
    • 2
  • Christine Boeglin
    • 2
  • Matthieu Houllé
    • 1
  • Dominique Bégin
    • 1
  • Dominique Plee
    • 3
  • Marc-Jacques Ledoux
    • 1
  • Cuong Pham-Huu
    • 1
  1. 1.Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC)UMR7515 CNRS-Université de Strasbourg 25Strasbourg Cedex 08France
  2. 2.Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR7504 CNRS-Université de Strasbourg 23Strasbourg Cedex 02France
  3. 3.Arkema, Groupement de Recherche de Lacq (GRL)LACQFrance

Personalised recommendations