Advertisement

Enhanced π-π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube

  • 580 Accesses

  • 12 Citations

Abstract

In situ low-voltage aberration corrected transmission electron microscopy (TEM) observations of the dynamic entrapment of a C60 molecule in the saddle of a bent double-walled carbon nanotube is presented. The fullerene interaction is non-covalent, suggesting that enhanced π-π interactions (van der Waals forces) are responsible. Classical molecular dynamics calculations confirm that the increased interaction area associated with a buckle is sufficient to trap a fullerene. Moreover, they show hopping behavior in agreement with our experimental observations. Our findings further our understanding of carbon nanostructure interactions, which are important in the rapidly developing field of low-voltage aberration corrected TEM and nano-carbon device fabrication.

References

  1. [1]

    Li, C.; Chen, Y. H.; Wang, Y. B.; Iqbal, Z.; Chhowalla, M.; Mitra, S. A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 2007, 17, 2406–2411.

  2. [2]

    Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L. Evolution of strategies for self-assembly and hookup of molecule-based devices. Ann. NY Acad. Sci. 1998, 852, 349–370.

  3. [3]

    Jaochim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

  4. [4]

    Moth-Poulsen, K.; Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnol. 2009, 4, 551–556.

  5. [5]

    Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.

  6. [6]

    Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

  7. [7]

    Yao, X.; Han, Q.; Xin, H. Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci. 2008, 43, 579–590.

  8. [8]

    Postma, H. W. Ch.; Teepen, T.; Yao, Z.; Grofoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76–79.

  9. [9]

    Zhu, J.; Pan, Z. Y.; Wang, Y. X.; Zhou, L.; Jiang, Q. The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 2007, 18, 275702.

  10. [10]

    Bandow, S.; Takizawa, M.; Hirahara, L.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48–54.

  11. [11]

    Monthioux, M. Filling single-wall carbon nanotubes. Carbon 2002, 40, 1809–1823.

  12. [12]

    Warner, J. H.; Yasuhiro, I.; Zaka, M.; Ge, L.; Akachi, T.; Okimoto, H.; Porfyrakis, K.; Watt, A. A. R.; Shinohara, H.; Briggs, G. A. D. Rotating fullerene chains in carbon nanopeapods. Nano Lett. 2008, 8, 2328–2335.

  13. [13]

    Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.

  14. [14]

    Rümmeli, M. H.; Loeffler, M.; Kramberger, C.; Simon, F.; Fülöp, F.; Jost, O.; Schöenfelder, R.; Grüeneis, A.; Gemming, T.; Pompe, W.; Büchner, B.; Pichler, T. Isotope-engineered single-wall carbon nanotubes: A key material for magnetic studies. J. Phys. Chem. C 2007, 111, 4094–4098.

  15. [15]

    Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Vardarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.

  16. [16]

    Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.

  17. [17]

    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol Graphics 1996, 4, 33–38.

  18. [18]

    Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Gemming, T.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 2009, 102, 195504.

  19. [19]

    Bahnhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.

Download references

Author information

Correspondence to Mark H. Rümmeli.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Electronic supplementary material

Supplementary material, approximately 340 KB.

Supplementary material, approximately 340 KB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorantla, S., Avdoshenko, S., Börrnert, F. et al. Enhanced π-π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Res. 3, 92–97 (2010). https://doi.org/10.1007/s12274-010-1012-6

Download citation

Keywords

  • Carbon nanotubes
  • fullerenes
  • low-voltage transmission electron microscopy
  • molecule trap