Nano Research

, Volume 3, Issue 2, pp 92–97 | Cite as

Enhanced π-π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube

  • Sandeep Gorantla
  • Stanislav Avdoshenko
  • Felix Börrnert
  • Alicja Bachmatiuk
  • Maria Dimitrakopoulou
  • Franziska Schäffel
  • Ronny Schönfelder
  • Jürgen Thomas
  • Thomas Gemming
  • Jamie H. Warner
  • Gianaurelio Cuniberti
  • Jürgen Eckert
  • Bernd Büchner
  • Mark H. Rümmeli
Open Access
Research Article

Abstract

In situ low-voltage aberration corrected transmission electron microscopy (TEM) observations of the dynamic entrapment of a C60 molecule in the saddle of a bent double-walled carbon nanotube is presented. The fullerene interaction is non-covalent, suggesting that enhanced π-π interactions (van der Waals forces) are responsible. Classical molecular dynamics calculations confirm that the increased interaction area associated with a buckle is sufficient to trap a fullerene. Moreover, they show hopping behavior in agreement with our experimental observations. Our findings further our understanding of carbon nanostructure interactions, which are important in the rapidly developing field of low-voltage aberration corrected TEM and nano-carbon device fabrication.

Keywords

Carbon nanotubes fullerenes low-voltage transmission electron microscopy molecule trap 

Supplementary material

12274_2010_1012_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 340 KB.

Supplementary material, approximately 340 KB.

References

  1. [1]
    Li, C.; Chen, Y. H.; Wang, Y. B.; Iqbal, Z.; Chhowalla, M.; Mitra, S. A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 2007, 17, 2406–2411.CrossRefGoogle Scholar
  2. [2]
    Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L. Evolution of strategies for self-assembly and hookup of molecule-based devices. Ann. NY Acad. Sci. 1998, 852, 349–370.CrossRefADSGoogle Scholar
  3. [3]
    Jaochim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.CrossRefADSGoogle Scholar
  4. [4]
    Moth-Poulsen, K.; Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnol. 2009, 4, 551–556.CrossRefADSGoogle Scholar
  5. [5]
    Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.CrossRefPubMedGoogle Scholar
  6. [6]
    Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Yao, X.; Han, Q.; Xin, H. Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci. 2008, 43, 579–590.CrossRefGoogle Scholar
  8. [8]
    Postma, H. W. Ch.; Teepen, T.; Yao, Z.; Grofoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76–79.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Zhu, J.; Pan, Z. Y.; Wang, Y. X.; Zhou, L.; Jiang, Q. The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 2007, 18, 275702.CrossRefADSGoogle Scholar
  10. [10]
    Bandow, S.; Takizawa, M.; Hirahara, L.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48–54.CrossRefADSGoogle Scholar
  11. [11]
    Monthioux, M. Filling single-wall carbon nanotubes. Carbon 2002, 40, 1809–1823.CrossRefGoogle Scholar
  12. [12]
    Warner, J. H.; Yasuhiro, I.; Zaka, M.; Ge, L.; Akachi, T.; Okimoto, H.; Porfyrakis, K.; Watt, A. A. R.; Shinohara, H.; Briggs, G. A. D. Rotating fullerene chains in carbon nanopeapods. Nano Lett. 2008, 8, 2328–2335.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.CrossRefADSGoogle Scholar
  14. [14]
    Rümmeli, M. H.; Loeffler, M.; Kramberger, C.; Simon, F.; Fülöp, F.; Jost, O.; Schöenfelder, R.; Grüeneis, A.; Gemming, T.; Pompe, W.; Büchner, B.; Pichler, T. Isotope-engineered single-wall carbon nanotubes: A key material for magnetic studies. J. Phys. Chem. C 2007, 111, 4094–4098.CrossRefGoogle Scholar
  15. [15]
    Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Vardarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.MATHCrossRefADSGoogle Scholar
  16. [16]
    Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.CrossRefGoogle Scholar
  17. [17]
    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol Graphics 1996, 4, 33–38.CrossRefGoogle Scholar
  18. [18]
    Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Gemming, T.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 2009, 102, 195504.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Bahnhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sandeep Gorantla
    • 1
  • Stanislav Avdoshenko
    • 2
  • Felix Börrnert
    • 1
  • Alicja Bachmatiuk
    • 1
  • Maria Dimitrakopoulou
    • 1
  • Franziska Schäffel
    • 1
  • Ronny Schönfelder
    • 1
  • Jürgen Thomas
    • 1
  • Thomas Gemming
    • 1
  • Jamie H. Warner
    • 3
  • Gianaurelio Cuniberti
    • 2
  • Jürgen Eckert
    • 1
  • Bernd Büchner
    • 1
  • Mark H. Rümmeli
    • 1
  1. 1.IFW DresdenDresdenGermany
  2. 2.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations