Nano Research

, Volume 3, Issue 1, pp 51–60

Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging

  • Xuefeng Yu
  • Min Li
  • Mengyin Xie
  • Liangdong Chen
  • Yan Li
  • Ququan Wang
Open Access
Research Article


A novel strategy is proposed to directly synthesize water-soluble hexagonal NaYF4 nanorods by doping rare-earth ions with large ionic radius (such as La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+), and the dopantcontrolled growth mechanism is studied. Based on the doping effect, we fabricated water-soluble hexagonal NaYF4:(Yb,Er)/La and NaYF4:(Yb,Er)/Ce nanorods, which exhibited much brighter upconversion fluorescence than the corresponding cubic forms. The sizes of the nanorods can be adjusted over a broad range by changing the dopant concentration and reaction time. Furthermore, we successfully demonstrated a novel depth-sensitive multicolor bioimaging for in vivo use by employing the as-synthesized NaYF4:(Yb,Er)/La nanorods as probes.


Crystal growth hexagonal NaYF4 nanocrystals fluorescence bioimaging 

Supplementary material

12274_2010_1008_MOESM1_ESM.pdf (757 kb)
Supplementary material, approximately 757 KB.


  1. [1]
    Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Cao, J.; Wang, Q.; Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Stone, J. W.; Sisco, P. N.; Goldsmith, E. C.; Baxter, S. C.; Murphy, C. J. Using gold nanorods to probe cell-induced collagen deformation. Nano Lett. 2007, 7, 116–119.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Peng, X.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.CrossRefGoogle Scholar
  8. [8]
    Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.MATHCrossRefADSGoogle Scholar
  9. [9]
    Wang, D. S.; Xie, T.; Li. Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  10. [10]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Cao, Y. C. Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457.CrossRefPubMedGoogle Scholar
  12. [12]
    Le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. -P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-emitting CePO4:Th/LaPO4 coreshell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. 2003, 42, 5513–5516.CrossRefGoogle Scholar
  14. [14]
    Stouwdam, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.CrossRefADSGoogle Scholar
  15. [15]
    Yu, X. F.; Chen, L. D.; Li, M.; Xie, M. Y.; Zhou, L.; Li, Y.; Wang, Q. Q. Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Adv. Mater. 2008, 20, 4118–4123.CrossRefGoogle Scholar
  16. [16]
    Riwotzki, K.; Haase, M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 1998, 102, 10129–10135.CrossRefGoogle Scholar
  17. [17]
    Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 2007, 46, 7976–7979.CrossRefGoogle Scholar
  18. [18]
    Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A fourcolor colloidal multiplexing nanoparticle system. ACS Nano 2008, 2, 120–124.CrossRefPubMedGoogle Scholar
  19. [19]
    Gao, L.; Ge, X.; Chai, Z. L.; Xu, G. H.; Wang, X.; Wang. C. Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid. Nano Res. 2009, 2, 565–574.CrossRefGoogle Scholar
  20. [20]
    Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoridebased green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.CrossRefGoogle Scholar
  21. [21]
    Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Yue, G.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors. Nano Lett. 2004, 4, 2191–2196.CrossRefADSGoogle Scholar
  22. [22]
    Wang, L. Y.; Yan, R. X.; Huo, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.CrossRefGoogle Scholar
  23. [23]
    Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008, 29, 937–943.CrossRefPubMedGoogle Scholar
  24. [24]
    Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Heer, S.; Kömpe, K.; Güdel, H. U.; Haase, M. Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.CrossRefGoogle Scholar
  26. [26]
    Zeng, J. H.; Su, J.; Li, Z. H.; Yan, R. X.; Li, Y. D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005, 17, 2119–2123.CrossRefGoogle Scholar
  27. [27]
    Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.CrossRefGoogle Scholar
  28. [28]
    Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.CrossRefPubMedGoogle Scholar
  29. [29]
    Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.CrossRefGoogle Scholar
  30. [30]
    Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Wei, Y.; Lu, F. Q.; Zhang, X. R.; Chen, D. P. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4: Yb, Er nanoplates. Chem. Mater. 2006, 18, 5733–5737.CrossRefGoogle Scholar
  32. [32]
    Li, C. X.; Yang, J.; Quan, Z. W.; Yang, P.; Kong, D. Y.; Lin, J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources. Chem. Mater. 2007, 19, 4933–4942.CrossRefGoogle Scholar
  33. [33]
    Yi, G. -S.; Chow, G. -M. Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343.CrossRefGoogle Scholar
  34. [34]
    Shan, J.; Qin, X.; Yao, N.; Ju, Y. G. Synthesis of monodisperse hexagonal NaYF4:Yb,Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology 2007, 18, 445607.CrossRefADSGoogle Scholar
  35. [35]
    Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.CrossRefGoogle Scholar
  36. [36]
    Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.CrossRefGoogle Scholar
  37. [37]
    Abel, K. A.; Boyer, J. -C.; van Veggel, F. C. J. M. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 2009, 131, 14644–14645.CrossRefPubMedGoogle Scholar
  38. [38]
    Li, Z. Q.; Zhang, Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 2006, 45, 7732–7735.CrossRefGoogle Scholar
  39. [39]
    Wang, F.; Liu, X G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.CrossRefPubMedGoogle Scholar
  40. [40]
    Wang, F.; Chatterjee, D. K.; Li, Z. Q.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.CrossRefADSGoogle Scholar
  41. [41]
    Neurgaonkar, R. R.; Oliver, J. R.; Cory, W. K.; Cross, L. E.; Viehland, D. Piezoelectricity in tungsten bronze crystals. Ferroelectrics 1994, 160, 265–276.Google Scholar
  42. [42]
    Jung, Y. -S.; Na, E. -S.; Paik, U.; Lee, J.; Kim, J. A. Study on the phase transition and characteristics of rare earth elements doped BaTiO3. Mater. Res. Bull. 2002, 37, 1633–1640.CrossRefGoogle Scholar
  43. [43]
    Mansuy, C.; Leroux, F.; Mahiou, R.; Nedelec, J. M. Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: A combined study by X-ray absorption and luminescence spectroscopies. J. Mater. Chem. 2005, 15, 4129–4135.CrossRefGoogle Scholar
  44. [44]
    Nedelec, J. -M.; Courtheoux, L.; Jallot, E.; Kinowski, C.; Lao, J.; Laquerriere, P.; Mansuy, C.; Renaudin, G.; Turrell, S. Materials doping through sol-gel chemistry: A little something can make a big difference. J. Sol-Gel Sci. Technol. 2008, 46, 259–271.CrossRefGoogle Scholar
  45. [45]
    Walha, I.; Ehrenberg, H.; Fuess, H.; Cheikhrouhou, A. Structure and magnetic properties of lanthanum and calciumdeficient La0.5Ca0.5MnO3 manganites. J. Alloy Compd. 2007, 433, 63–67.CrossRefGoogle Scholar
  46. [46]
    Ezekwenna, P. C.; Marasinghe, G. K.; Nam, J. -H.; James, W. J.; Yelon, W. B.; Ellouse, M.; I’Héritier, Ph. A Magnetic and crystallographic study of (Sm/Gd)2(Fe/Si)17Cz solid solutions. J. Appl. Phys. 2000, 87, 6716–6718.CrossRefADSGoogle Scholar
  47. [47]
    Brixner, L. H.; Crawford, M. K.; Hyatt, G.; Carnall, W. T.; Blasse, G. Structure and luminescence of the La1−xGdxF3 system. J. Electrochem. Soc. 1991, 138, 313–317.CrossRefGoogle Scholar
  48. [48]
    Dong, C. H.; Raudsepp, M.; van Veggel, F. C. J. M. Kinetically determined crystal structures of undoped and La3+-doped LnF3. J. Phys. Chem. C 2009, 113, 472–478.CrossRefGoogle Scholar
  49. [49]
    Chen, Y. F.; Kim, M.; Lian, G.; Johnson, M. B.; Peng, X. G. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 2005, 127, 13331–13337.CrossRefPubMedGoogle Scholar
  50. [50]
    Andresen, M.; Stiel, A. C.; Fölling, J.; Wenzel, D.; Schönle, A.; Egner, A.; Eggeling, C.; Hell, S. W.; Jakobs, S. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 2008, 26, 1035–1040.CrossRefPubMedGoogle Scholar
  51. [51]
    König, K. Multiphoton microscopy in life sciences. J. Microsc. 2000, 200, 83–104.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Xuefeng Yu
    • 1
  • Min Li
    • 1
  • Mengyin Xie
    • 1
  • Liangdong Chen
    • 2
  • Yan Li
    • 2
  • Ququan Wang
    • 1
  1. 1.Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of EducationWuhan UniversityWuhanChina
  2. 2.Department of OncologyZhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina

Personalised recommendations