Nano Research

, Volume 3, Issue 1, pp 16–22 | Cite as

Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets

Open Access
Research Article


We report a facile approach to synthesize narrow and long graphene nanoribbons (GNRs) by sonochemically cutting chemically derived graphene sheets (GSs). The yield of GNRs can reach ∼5 wt% of the starting GSs. The resulting GNRs are several micrometers in length, with ∼75% being single-layer, and ∼40% being narrower than 20 nm in width. A chemical tailoring mechanism involving oxygen-unzipping of GSs under sonochemical conditions is proposed on the basis of experimental observations and previously reported theoretical calculations; it is suggested that the formation and distribution of line faults on graphite oxide and GSs play crucial roles in the formation of GNRs. These results open up the possibilities of the large-scale synthesis and various technological applications of GNRs.


Graphene nanoribbon graphene oxide synthesis sonochemical cutting 

Supplementary material

12274_2010_1003_MOESM1_ESM.pdf (410 kb)
Supplementary material, approximately 409 KB.


  1. [1]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.CrossRefPubMedGoogle Scholar
  3. [3]
    Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Yamashiro, A.; Shimoi, Y.; Harigaya, K.; Wakabayashi, K. Spin- and charge-polarized states in nanographene ribbons with zigzag edges. Phys. Rev. B 2003, 68, 193410.CrossRefADSGoogle Scholar
  6. [6]
    Yang, L.; Cohen, M. L.; Louie, S. G. Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 2007, 7, 3112–3115.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.CrossRefPubMedGoogle Scholar
  8. [8]
    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Wei, D.; Liu, Y.; Zhang, H.; Huang, L.; Wu, B.; Chen, J.; Yu, G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 2009, 131, 11147–11154.CrossRefPubMedGoogle Scholar
  10. [10]
    Bai, J.; Duan, X.; Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009, 9, 2083–2087.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–877.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Li, J. L.; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Ajayan, P. M.; Yakobson, B. I. Materials science-Oxygen breaks into carbon world. Nature 2006, 441, 818–819.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Li, Z.; Zhang, W.; Luo, Y.; Yang, J.; Hou, J. G. How graphene is cut upon oxidation? J. Am. Chem. Soc. 2009, 131, 6320–6321.CrossRefGoogle Scholar
  17. [17]
    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.CrossRefPubMedGoogle Scholar
  18. [18]
    Kutana, A.; Giapis, K. P. Analytical carbon-oxygen reactive potential. J. Chem. Phys. 2008, 128, 234706.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47, 493–499.CrossRefGoogle Scholar
  20. [20]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  21. [21]
    Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations