Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets

Abstract

We report a facile approach to synthesize narrow and long graphene nanoribbons (GNRs) by sonochemically cutting chemically derived graphene sheets (GSs). The yield of GNRs can reach ∼5 wt% of the starting GSs. The resulting GNRs are several micrometers in length, with ∼75% being single-layer, and ∼40% being narrower than 20 nm in width. A chemical tailoring mechanism involving oxygen-unzipping of GSs under sonochemical conditions is proposed on the basis of experimental observations and previously reported theoretical calculations; it is suggested that the formation and distribution of line faults on graphite oxide and GSs play crucial roles in the formation of GNRs. These results open up the possibilities of the large-scale synthesis and various technological applications of GNRs.

References

  1. [1]

    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. [2]

    Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.

    Article  CAS  PubMed  Google Scholar 

  3. [3]

    Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  PubMed  ADS  Google Scholar 

  4. [4]

    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. [5]

    Yamashiro, A.; Shimoi, Y.; Harigaya, K.; Wakabayashi, K. Spin- and charge-polarized states in nanographene ribbons with zigzag edges. Phys. Rev. B 2003, 68, 193410.

    Article  ADS  Google Scholar 

  6. [6]

    Yang, L.; Cohen, M. L.; Louie, S. G. Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 2007, 7, 3112–3115.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. [7]

    Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

    Article  CAS  PubMed  Google Scholar 

  8. [8]

    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. [9]

    Wei, D.; Liu, Y.; Zhang, H.; Huang, L.; Wu, B.; Chen, J.; Yu, G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 2009, 131, 11147–11154.

    Article  CAS  PubMed  Google Scholar 

  10. [10]

    Bai, J.; Duan, X.; Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009, 9, 2083–2087.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. [11]

    Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533.

    Article  PubMed  ADS  Google Scholar 

  12. [12]

    Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. [13]

    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–877.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. [14]

    Li, J. L.; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.

    Article  PubMed  ADS  Google Scholar 

  15. [15]

    Ajayan, P. M.; Yakobson, B. I. Materials science-Oxygen breaks into carbon world. Nature 2006, 441, 818–819.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. [16]

    Li, Z.; Zhang, W.; Luo, Y.; Yang, J.; Hou, J. G. How graphene is cut upon oxidation? J. Am. Chem. Soc. 2009, 131, 6320–6321.

    Article  CAS  Google Scholar 

  17. [17]

    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Article  CAS  PubMed  Google Scholar 

  18. [18]

    Kutana, A.; Giapis, K. P. Analytical carbon-oxygen reactive potential. J. Chem. Phys. 2008, 128, 234706.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. [19]

    Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47, 493–499.

    Article  CAS  Google Scholar 

  20. [20]

    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  21. [21]

    Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wencai Ren or Hui-Ming Cheng.

Electronic supplementary material

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Wu, ZS., Ren, W., Gao, L. et al. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 3, 16–22 (2010). https://doi.org/10.1007/s12274-010-1003-7

Download citation

Keywords

  • Graphene nanoribbon
  • graphene oxide
  • synthesis
  • sonochemical cutting