Nano Research

, Volume 4, Issue 4, pp 376–384 | Cite as

Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface

  • Sergey A. Krasnikov
  • Catherine M. Doyle
  • Natalia N. Sergeeva
  • Alexei B. Preobrajenski
  • Nikolay A. Vinogradov
  • Yulia N. Sergeeva
  • Alexei A. Zakharov
  • Mathias O. Senge
  • Attilio A. Cafolla
Research Article


The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto the substrate at room temperature, the NiTBrPP forms a well-ordered close-packed molecular layer in which the molecules have a flat orientation with the porphyrin macrocycle plane lying parallel to the substrate. Annealing of the NiTBrPP layer on the Au(111) surface at 525 K leads to dissociation of bromine from the porphyrin followed by the formation of covalent bonds between the phenyl substituents of the porphyrin. This results in the formation of continuous covalently bonded porphyrin networks, which are stable up to 800 K and can be recovered after exposure to ambient conditions. By controlling the experimental conditions, a robust, extended porphyrin network can be prepared on the Au(111) surface that has many potential applications such as protective coatings, in sensing or as a host structure for molecules and clusters.


Porphyrins covalently bonded networks scanning tunnelling microscopy X-ray photoemission spectroscopy near-edge X-ray absorption fine structure Au(111) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.CrossRefGoogle Scholar
  2. [2]
    Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95–146.CrossRefGoogle Scholar
  3. [3]
    Barth, J. V. Molecular architectonic on metal surfaces. Ann. Rev. Phys. Chem. 2007, 58, 375–407.CrossRefGoogle Scholar
  4. [4]
    Elemans, J. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 2006, 18, 1251–1266.CrossRefGoogle Scholar
  5. [5]
    Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRefGoogle Scholar
  6. [6]
    Pawin, G.; Wong, K. L.; Kwon, K. Y.; Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 2006, 313, 961–962.CrossRefGoogle Scholar
  7. [7]
    Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.CrossRefGoogle Scholar
  8. [8]
    van Hameren, R.; Schon, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; et al. Macroscopic hierarchical surface patterning of porphyrin trimers via selfassembly and dewetting. Science 2006, 314, 1433–1436.CrossRefGoogle Scholar
  9. [9]
    Xu, W.; Dong, M.; Gersen, H.; Vázquez-Campos, S.; Bouju, X.; Lægsgaard, E.; Stensgaard, I.; Crego-Calama, M.; Reinhoudt, D. N.; Linderoth, T. R.; et al. Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface. Nano Res. 2009, 2, 535–542.CrossRefGoogle Scholar
  10. [10]
    Schnadt, J.; Xu, W.; Vang, R. T.; Knudsen, J.; Li, Z.; Lægsgaard, E.; Besenbacher, F. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures. Nano Res. 2010, 3, 459–471.CrossRefGoogle Scholar
  11. [11]
    Krasnikov, S. A.; Bozhko, S. I.; Radican, K.; Lübben, O.; Murphy, B. E.; Vadapoo, S. R.; Wu, H. C.; Abid, M.; Semenov, V. N.; Shvets, I. V. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. DOI: 10.1007/s12274-010-0070-0.Google Scholar
  12. [12]
    Krasnikov, S. A.; Beggan, J. P.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A. Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 2009, 20, 135301.CrossRefGoogle Scholar
  13. [13]
    Krasnikov, S. A.; Hanson, C. J.; Brougham, D. F.; Cafolla, A. A. Dimer ordering of CuTtertBuPc molecules on the Ag/Si(111)-(\( \sqrt 3 \) × \( \sqrt 3 \))R30° surface: A scanning tunnelling microscopy/spectroscopy study. J. Phys.: Condens. Matter. 2007, 19, 446005.CrossRefGoogle Scholar
  14. [14]
    Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691.CrossRefGoogle Scholar
  15. [15]
    Bitzer, T.; Richardson, N. V. Demonstration of an imide coupling reaction on a Si(100)-2×1 surface by molecular layer deposition. Appl. Phys. Lett. 1997, 71, 662–664.CrossRefGoogle Scholar
  16. [16]
    Treier, M.; Richardson, N. V.; Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 2008, 130, 14054–14055.CrossRefGoogle Scholar
  17. [17]
    Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Strunskus, T.; Wöll, C.; Dahlbom, M.; Hammer, B.; Lægsgaard, E.; et al. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 2007, 46, 9227–9230.CrossRefGoogle Scholar
  18. [18]
    Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 2008, 47, 4406–4410.CrossRefGoogle Scholar
  19. [19]
    Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.CrossRefGoogle Scholar
  20. [20]
    Berner, S.; Corso, M.; Widmer, R.; Groening, O.; Laskowski, R.; Blaha, P.; Schwarz, K.; Goriachko, A.; Over, H.; Gsell, S.; et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 2007, 46, 5115–5119.CrossRefGoogle Scholar
  21. [21]
    Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119–123.CrossRefGoogle Scholar
  22. [22]
    Preobrajenski, A. B.; Krasnikov, S. A.; Vinogradov, A. S.; Ng, M. L.; Käämbre, T.; Cafolla, A. A.; Mårtensson, N. Adsorption-induced gap states of h-BN on metal surfaces. Phys. Rev. B 2008, 77, 085421.CrossRefGoogle Scholar
  23. [23]
    N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.CrossRefGoogle Scholar
  24. [24]
    Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.CrossRefGoogle Scholar
  25. [25]
    Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130, 6678–6679.CrossRefGoogle Scholar
  26. [26]
    Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X.; Cai, C.; Barth, J. V.; Kern, K. Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 2004, 3, 229–233.CrossRefGoogle Scholar
  27. [27]
    Kiebele, A.; Bonifazi, D.; Cheng, F.; Stöhr, M.; Diederich, F.; Spillmann, A. Adsorption and dynamics of long-range interacting fullerenes in a flexible, two-dimensional, nanoporous porphyrin network. Chem. Phys. Chem. 2006, 7, 1462–1470.Google Scholar
  28. [28]
    Senge, M. O.; Shaker, Y. M.; Pintea, M.; Ryppa, C.; Hatscher, S. S.; Ryan, A.; Sergeeva, Y. Synthesis of meso-substituted ABCD-type porphyrins by functionalization reactions. Eur. J. Org. Chem. 2010, 237–258.Google Scholar
  29. [29]
    Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Mhuircheartaigh, E. M. N. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.CrossRefGoogle Scholar
  30. [30]
    Lin, V. S. Y.; DiMagno, S. G.; Therien, M. J. Highly conjugated, acetylenyl bridged porphyrins—new models for light-harvesting antenna systems. Science 1994, 264, 1105–1111.Google Scholar
  31. [31]
    Sergeeva, N. N.; Senge, M. O. Handbook of Porphyrin Science. Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; Vol. 3, World Scientific: Singapore, 2010; pp 325.CrossRefGoogle Scholar
  32. [32]
    Beggan, J. P.; Krasnikov, S. A.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A. Self-assembly of Ni(II) porphine molecules on the Ag/Si(111)-(\( \sqrt 3 \) × \( \sqrt 3 \))R30° surface studied by STM/STS and LEED. J. Phys.: Condens. Matter. 2008, 20, 015003.CrossRefGoogle Scholar
  33. [33]
    Nikiforov, M. P.; Zerweck, U.; Milde, M.; Loppacher, C.; Park, T. H.; Uyeda, H. T.; Therien, M. J.; Eng, L.; Bonnell, D. The effect of molecular orientation on the potential of porphyrin-metal contacts. Nano Lett. 2008, 8, 110–113.CrossRefGoogle Scholar
  34. [34]
    Krasnikov, S. A.; Sergeeva, N. N.; Sergeeva, Y. N.; Senge, M. O.; Cafolla, A. A. Self-assembled rows of Ni porphyrin dimers on the Ag(111) surface. Phys. Chem. Chem. Phys. 2010, 12, 6666–6671.CrossRefGoogle Scholar
  35. [35]
    Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Mashiko, S. Nonplanar adsorption and orientational ordering of porphyrin molecules on Au(111). J. Chem. Phys. 2001, 115, 3814–3818.CrossRefGoogle Scholar
  36. [36]
    de Jong, M. P.; Friedlein, R.; Sorensen, S. L.; Öhrwall, G.; Osikowicz, W.; Tengsted, C.; Jönsson, S. K. M.; Fahlman, M.; Salaneck, W. R. Orbital-specific dynamic charge transfer from Fe(II)-tetraphenylporphyrin molecules to molybdenum disulfide substrates. Phys. Rev. B 2005, 72, 035448.CrossRefGoogle Scholar
  37. [37]
    Auwärter, W.; Weber-Bargioni, A.; Riemann, A.; Schiffrin, A.; Gröning, O.; Fasel, R.; Barth, J. V. Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111). J. Chem. Phys. 2006, 124, 194708.CrossRefGoogle Scholar
  38. [38]
    Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 4456–4458.Google Scholar
  39. [39]
    Kominar, R. J.; Krech, M. J.; Price, S. J. W. Pyrolysis of bromobenzene by toluene carrier technique and determination of D(C6H5-Br). Can. J. Chem. 1978, 56, 1589–1592.CrossRefGoogle Scholar
  40. [40]
    Szwarc, M. Energy of the central C-C bond in diphenyl. Nature 1948, 161, 890–891.CrossRefGoogle Scholar
  41. [41]
    Krasnikov, S. A.; Preobrajenski, A. B.; Sergeeva, N. N.; Brzhezinskaya, M. M.; Nesterov, M. A.; Cafolla, A. A.; Senge, M. O.; Vinogradov, A. S. Electronic structure of Ni(II) porphyrins and phthalocyanine studied by soft X-ray absorption spectroscopy. Chem. Phys. 2007, 332, 318–324.CrossRefGoogle Scholar
  42. [42]
    Krasnikov, S. A.; Sergeeva, N. N.; Brzhezinskaya, M. M.; Preobrajenski, A. B.; Sergeeva, Y. N.; Vinogradov, N. A.; Cafolla, A. A.; Senge, M. O.; Vinogradov, A. S. An X-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. J. Phys.: Condens. Matter. 2008, 20, 235207.CrossRefGoogle Scholar
  43. [43]
    Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 1997, 30, 1–152.CrossRefGoogle Scholar
  44. [44]
    Ng, M. L.; Preobrajenski, A. B.; Zakharov, A. A.; Vinogradov, A. S.; Krasnikov, S. A.; Cafolla, A. A.; Mårtensson, N. Effect of substrate nanopatterning on the growth and structure of pentacene films. Phys. Rev. B 2010, 81, 115449.CrossRefGoogle Scholar
  45. [45]
    Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sergey A. Krasnikov
    • 1
    • 2
  • Catherine M. Doyle
    • 1
  • Natalia N. Sergeeva
    • 3
  • Alexei B. Preobrajenski
    • 4
  • Nikolay A. Vinogradov
    • 4
  • Yulia N. Sergeeva
    • 3
  • Alexei A. Zakharov
    • 4
  • Mathias O. Senge
    • 3
  • Attilio A. Cafolla
    • 1
  1. 1.School of Physical SciencesDublin City UniversityGlasnevin, Dublin 9Ireland
  2. 2.Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of PhysicsTrinity College DublinDublin 2Ireland
  3. 3.SFI Tetrapyrrole Laboratory, School of ChemistryTrinity College DublinDublin 2Ireland
  4. 4.MAX-LabLund UniversityLundSweden

Personalised recommendations