Advertisement

Nano Research

, Volume 4, Issue 3, pp 259–265 | Cite as

Hot-electron effects in InAs nanowire Josephson junctions

  • Stefano Roddaro
  • Andrea Pescaglini
  • Daniele Ercolani
  • Lucia Sorba
  • Francesco Giazotto
  • Fabio Beltram
Research Article

Abstract

The controlled tailoring of the energy distribution in an electron system opens the way to interesting new physics and device concepts, as demonstrated by research on metallic nanodevices during recent years. Here we investigate how Josephson coupling in a superconductor-InAs nanowire junction can be tuned by means of hot-electron injection and we show that a complete suppression of superconductive effects can be achieved using a power as low as 100 pW. Nanowires offer a novel design freedom as they allow axial and radial heterostructures to be defined as well as control over doping profiles, which can be crucial in the development of devices—such as nanorefrigerators—where precisely controlled and predictable energy barriers are mandatory. Our work provides estimates for unknown key thermal and electrical parameters, such as the electron-phonon coupling, in our InAs nanostructures.

Keywords

Nanowire hot-electron Josephson effect InAs heat conduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_77_MOESM1_ESM.pdf (656 kb)
Supplementary material, approximately 654 KB.

References

  1. [1]
    de Gennes, P. G. Superconductivity of Metals and Alloys; W. A. Benjamin: New York, 1966.Google Scholar
  2. [2]
    Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 1964, 19, 1228–1231.Google Scholar
  3. [3]
    Giazotto, F.; Peltonen, J. T.; Meschke, M.; Pekola, J. P. Superconducting quantum interference proximity transistor. Nature Phys. 2010, 6, 254–259.CrossRefGoogle Scholar
  4. [4]
    Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 1979, 51, 101–159.CrossRefGoogle Scholar
  5. [5]
    Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.CrossRefGoogle Scholar
  6. [6]
    Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.CrossRefGoogle Scholar
  7. [7]
    Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.CrossRefGoogle Scholar
  8. [8]
    Hoffmann, E. A.; Nilsson, H. A.; Matthews, J. E.; Nakpathomkun, N.; Persson, A. I.; Samuelson, L.; Linke, H. Measuring temperature gradients over nanometer length scales. Nano Lett. 2009, 9, 779–783.CrossRefGoogle Scholar
  9. [9]
    Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208–213.CrossRefGoogle Scholar
  10. [10]
    Doh, Y. -J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.CrossRefGoogle Scholar
  11. [11]
    Frielinghaus, R.; Batov, I. E.; Weides, M.; Kohlstedt, H.; Calarco, R.; Schäpers, Th. Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Appl. Phys. Lett. 2010, 96, 132504.CrossRefGoogle Scholar
  12. [12]
    van Dam, J.; Nazarov, Y. V.; Bakkers, E. P. A. M.; De Franceschi, S.; Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 2006, 442, 667–670.CrossRefGoogle Scholar
  13. [13]
    Sand-Jespersen, T.; Paaske, J.; Andersen, B. M.; Grove-Rasmussen, K.; Jørgensen, H. I.; Aagesen, M.; Sørensen, C. B.; Lindelof, P. E.; Flensberg, K.; Nygård, J. Kondo-enhanced Andreev tunneling in InAs nanowire quantum dots. Phys. Rev. Lett. 2007, 99, 126603.CrossRefGoogle Scholar
  14. [14]
    Wilhelm, F. K.; Schøn, G.; Zaikin, A. D. Mesoscopic superconducting-normal metal-superconducting transistor. Phys. Rev. Lett. 1998, 81, 1682–1685.CrossRefGoogle Scholar
  15. [15]
    Morpurgo, A. F.; Klapwijk, T. M.; van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 1998, 72, 966–968.CrossRefGoogle Scholar
  16. [16]
    Schäpers, T.; Malindretos, J.; Neurohr, K.; Lachenmann, S.; van der Hart, A.; Crecelius, G.; Hardtdegen, H.; Lüth, H.; Golubov, A. A. Demonstration of a current-controlled three terminal Nb/InxGa1−xAs/InP Josephson contact. Appl. Phys. Lett. 1998, 73, 2348–2350.CrossRefGoogle Scholar
  17. [17]
    Baselmans, J. J. A.; Morpurgo, A. F.; van Wees, B. J.; Klapwijk, T. M. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 1999, 397, 43–45.CrossRefGoogle Scholar
  18. [18]
    Crosser, M. S.; Virtanen, P.; Heikkilä, T. T.; Birge, N. O. Supercurrent-induced temperature gradient across a nonequilibrium SNS Josephson junction. Phys. Rev. Lett. 2006, 96 167004.CrossRefGoogle Scholar
  19. [19]
    Giazotto, F.; Heikkilä, T. T.; Taddei, F.; Fazio, R.; Pekola, J. P.; Beltram, F. Tailoring Josephson coupling through superconductivity-induced nonequilibrium. Phys. Rev. Lett. 2004, 92, 137001.CrossRefGoogle Scholar
  20. [20]
    Savin, A. M.; Pekola, J. P.; Flyktman, J. T.; Anthore, A.; Giazotto, F. Cold electron Josephson transistor. Appl. Phys. Lett. 2004, 84, 4179–4181.CrossRefGoogle Scholar
  21. [21]
    Tirelli, S.; Savin, A. M.; Pascual Garcia, C.; Pekola, J. P.; Beltram, F.; Giazotto, F. Manipulation and generation of supercurrent in out-of-equilibrium Josephson tunnel nanojunctions. Phys. Rev. Lett. 2008, 101, 077004.CrossRefGoogle Scholar
  22. [22]
    Giazotto, F.; Heikkilä, T. T.; Luukanen, A.; Savin, A. M.; Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 2006, 78, 217–274.CrossRefGoogle Scholar
  23. [23]
    Jiang, X.; Xiong, Q.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.CrossRefGoogle Scholar
  24. [24]
    Roddaro, S.; Nilsson, K.; Astromskas, G.; Samuelson, L.; Wernersson, L. -E.; Karlström, O.; Wacker, A. InAs nanowire metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 2008, 92, 253509.CrossRefGoogle Scholar
  25. [25]
    Heikkilä, T. T.; Särkkä, J.; Wilhelm, F. K. Supercurrentcarrying density of states in diffusive mesoscopic Josephson weak links. Phys. Rev. B 2002, 66, 184513.CrossRefGoogle Scholar
  26. [26]
    Kulik, I. O.; Omelyan’chuk, A. N. Josephson effect in superconductive bridges: Microscopic theory. Fiz. Nizk. Temp. 1978, 4, 296–311 [Sov. J. Low Temp. Phys. 1978, 4, 142–156].Google Scholar
  27. [27]
    Courtois, H.; Meschke, M.; Peltonen, J. T.; Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 2008, 101, 067002.CrossRefGoogle Scholar
  28. [28]
    Pascual García, C.; Giazotto F. Josephson current in nanofabricated V/Cu/V mesoscopic junctions. Appl. Phys. Lett. 2009, 94, 132508.CrossRefGoogle Scholar
  29. [29]
    Clark, T. D.; Prance, R. J.; Grassie, A. D. C. Feasibility of hybrid Josephson field effect transistors. J. Appl. Phys. 1980, 51, 2736–2743.CrossRefGoogle Scholar
  30. [30]
    Akazaki, T.; Takayanagi, H.; Nitta, J.; Enoki, T. A Josephson field effect transistor using an InAs-insertedchannel In0.52Al0.48As/In0.53Ga0.47As inverted modulationdoped structure. Appl. Phys. Lett. 1996, 68, 418–420.CrossRefGoogle Scholar
  31. [31]
    Meschke, M.; Peltonen, J. T.; Courtois, H.; Pekola J. P. Calorimetric readout of a superconducting proximity-effect thermometer. J. Low Temp. Phys. 2009, 154, 190–198.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefano Roddaro
    • 1
  • Andrea Pescaglini
    • 1
  • Daniele Ercolani
    • 1
  • Lucia Sorba
    • 1
  • Francesco Giazotto
    • 1
  • Fabio Beltram
    • 1
    • 2
  1. 1.NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePisaItaly
  2. 2.IIT@NESTCenter for Nanotechnology InnovationPisaItaly

Personalised recommendations