Nano Research

, Volume 4, Issue 3, pp 249–258 | Cite as

CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance

Open Access
Research Article


Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350–600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.


TiO2 nanoparticles Au nanoparticles light scattering photoelectrochemistry 


  1. [1]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  2. [2]
    Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425–427.CrossRefGoogle Scholar
  3. [3]
    Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Photoelectrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen energy 2002, 27, 991–1022.CrossRefGoogle Scholar
  4. [4]
    Heller, A. Hydrogen-evolving solar-cells. Science 1984, 223, 1141–1148.CrossRefGoogle Scholar
  5. [5]
    Hagfeldt, A.; Gratzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95, 49–68.CrossRefGoogle Scholar
  6. [6]
    Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31, 1999–2017.CrossRefGoogle Scholar
  7. [7]
    Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 2007, 37, 765–787.CrossRefGoogle Scholar
  8. [8]
    Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123, 10639–10649.CrossRefGoogle Scholar
  9. [9]
    Wolcott, A.; Kuykendall, T. R.; Chen, W.; Chen, S. W.; Zhang, J. Z. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol) J. Phys. Chem. B 2006, 110, 25288–25296.CrossRefGoogle Scholar
  10. [10]
    Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006, 6, 24–28.CrossRefGoogle Scholar
  11. [11]
    Ahn, K. S.; Yan, Y. F.; Lee, S. H.; Deutsch, T.; Turner, J.; Tracy, C. E.; Perkins, C. L.; Al-Jassim, M. Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering. J. Electrochem. Soc. 2007, 154, B956–B959.CrossRefGoogle Scholar
  12. [12]
    Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y. P.; Zhang, J. Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 2009, 5, 104–111.CrossRefGoogle Scholar
  13. [13]
    Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679.CrossRefGoogle Scholar
  14. [14]
    Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light hotocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.CrossRefGoogle Scholar
  15. [15]
    Torres, G. R.; Lindgren, T.; Lu, J.; Granqvist, C. G.; Lindquist, S. E. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. J. Phys. Chem. B 2004, 108, 5995–6003.CrossRefGoogle Scholar
  16. [16]
    Qiu, X. F.; Zhao, Y. X.; Burda, C. Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Adv. Mater. 2007, 19, 3995–3999.CrossRefGoogle Scholar
  17. [17]
    Hensel, J.; Wang, G. M.; Li, Y.; Zhang, J. Z. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 2010, 10, 478–483.CrossRefGoogle Scholar
  18. [18]
    Chen, Z. H.; Tang, Y. B.; Liu, C. P.; Leung, Y. H.; Yuan, G. D.; Chen, L. M.; Wang, Y. Q.; Bello, I.; Zapien, J. A.; Zhang, W. J.; Lee, C. S.; Lee, S. T. Veertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C 2009, 113, 13433–13437.CrossRefGoogle Scholar
  19. [19]
    Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19, 5945–5951.CrossRefGoogle Scholar
  20. [20]
    Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved performance of amorphous silicon solar cells via scattering form surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006, 89, 093103.CrossRefGoogle Scholar
  21. [21]
    Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007, 101, 093105.CrossRefGoogle Scholar
  22. [22]
    Nakato, Y.; Shioji, M.; Tsubomura, H. Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer. The mechanism of semiconductor phtocatalysts. Chem. Phys. Lett. 1982, 90, 453–456.CrossRefGoogle Scholar
  23. [23]
    Zhao, G. L.; Kozuka, H.; Yoko, T. Photoelectrochemical properties of dye-sensitized TiO2 films containing dispersed gold metal particles prepared by sol-gel method. J. Ceramic Soc. Jan 1996, 104, 164–168.Google Scholar
  24. [24]
    Chandrasekharan, N.; Kamat, P. V. Improved the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 2000, 104, 10851–10857.CrossRefGoogle Scholar
  25. [25]
    Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanopaticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.CrossRefGoogle Scholar
  26. [26]
    Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 2004, 1810–1811.Google Scholar
  27. [27]
    Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 2010, 1, 2031–2036.CrossRefGoogle Scholar
  28. [28]
    Dawson, A.; Kamat, P. V. Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J. Phys. Chem. B 2001, 105, 960–966.CrossRefGoogle Scholar
  29. [29]
    Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phys. Chem. B 2001, 105, 11439–11446.CrossRefGoogle Scholar
  30. [30]
    Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106.CrossRefGoogle Scholar
  31. [31]
    Catchpoleand, K. R.; Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008, 93, 191113.CrossRefGoogle Scholar
  32. [32]
    Nakayama, K.; Tanabe, K.; Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008, 93, 121904.CrossRefGoogle Scholar
  33. [33]
    Smith, W.; Mao, S.; Lu, G. H.; Catlett, A.; Chen, J. H.; Zhao, Y. P. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 2010, 485, 171–175.CrossRefGoogle Scholar
  34. [34]
    Zhang, J. Z.; Noguez, C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics 2008, 3, 127–150.CrossRefGoogle Scholar
  35. [35]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal Spheres from nanocrytstals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar
  36. [36]
    Liu, L. P.; Hensel, J.; Fitzmorris, R. C.; Li, Y. D.; Zhang, J. Z. Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J. Phys. Chem. Lett. 2010, 1, 155–160.CrossRefGoogle Scholar
  37. [37]
    Lokhande, C. D.; Lee, E. H.; Jung, K. D.; Joo, O. S. Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films. Mater. Chem. Phys. 2005, 91, 200–204.CrossRefGoogle Scholar
  38. [38]
    Li, X. L.; Peng, Q.; Yi, J. X.; Wang, X.; Li, Y. D. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 2006, 12, 2383–2391.CrossRefGoogle Scholar
  39. [39]
    Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.CrossRefGoogle Scholar
  40. [40]
    Ahmadi, T. S.; Logunov, S. L.; El-Sayed, M. A. Picosecond dynamics of colloidal gold nanoparticles. J. Phys. Chem. 1996, 100, 8053–8056.CrossRefGoogle Scholar
  41. [41]
    Zhang, J. Z. Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res. 1997, 30, 423–429.CrossRefGoogle Scholar
  42. [42]
    Subramanian, V.; Wolf, E. E.; Kamat, P. V. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi-level equilibration. J. Phys. Chem. B 2003, 107, 7479–7485.CrossRefGoogle Scholar
  43. [43]
    Jakob, M.; Levanon, H.; Kamat, P. V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: Determination of shift in the Fermi level. Nano Lett. 2003, 3, 353–358.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations